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PREFACE

These notes are intended to serve as the text for MA1042:Matrix Algebra,
and for its 6-week refresher equivalent, MAR142. The intent of MA1042 and
MAR142 is to equip students with the fundamental mechanical skills for
follow-on courses in linear algebra that require a basic working knowledge of
matrix algebra and complex arithmetic. In the Department of Mathematics,
the principal target course is MA3042, Linear Algebra. Those whose plans
lead to MA3046, Computational Linear Algebra, are urged to take MA1043
rather than MA1042, although these notes might serve as the nucleus of the
material covered in that course. Other disciplines make heavy use of these
techniques, as well; one must venture into the arts and humanities to find
fields in which linear algebra does not come into play.

The notes contain two sections that are somewhat beyond what is nor-
mally covered in MA1042. The first is section 2.5, which gives a cursory
introduction to vector spaces and linear transformations. Optional reading
for students in MA1042, this provides a glimpse of the subject matter of
MA3042. The second is section 3.5, the topic of which is the cross product.
This is of potential interest to students of multivariable (three, to be precise)
calculus.

The course opens with an introduction to systems of linear equations and
their solution by substitution. The limitations of this method quickly be-
come apparent, and we begin the development of alternatives by discussing
the simplicity of the substitution method on certain highly structured sys-
tems. This leads us directly to Gaussian elimination. At this point we also
observe, and exploit, the ease with which linear equations can be represented
by matrices of coefficients, although matrices at this point are viewed as
notational conveniences that relieve some of the overhead of solving sytems
rather than as mathematical objects in their own right. We take a brief look
at the geometry of linear systems, enabling us to describe geometrically the
conditions under which a solution exists and to introduce informally the idea
of an ill-conditioned system of equations.

In Chapter 2, we take a first look at matrices as algebraic objects, and
describe the fundamental operations on these objects. We describe briefly
the elementary properties of linear transformations, and close with an intro-
duction to elementary matrices and inverses.

Chapter 3 revisits systems of linear equations from the point of view of
matrices, and shows that Gaussian elimination can be viewed as a special
case of matrix factorization. This leads naturally to the LU-decomposition
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of a square matrix. In keeping with the spirit of the course, we make sim-
plifying assumptions that do not apply in the general case. It is here that
we introduce the determinant, which is initially applied to the solution of
systems of linear equations via Cramer’s rule.

Chapter 4 introduces eigenvalues and eigenvectors, which open the door
to application of matrix algebra to a multitude of problems that arise through-
out the pure and applied sciences. As in Chapter 3, we do not consider the
topic of eigenvalues in its full generality; the general view is provided in
subsequent courses.

Chapter 5, an introduction to complex numbers, is independent of the
preceding chapters, with the exception of a section that is concerned with
complex eigenvalues and eigenvectors. We cover the fundamental operations
on complex numbers, and briefly discuss the geometry of the complex plane.
The shift from rectangular to polar coordinates leads directly to DeMoivre’s
Theorem and, with the assistance of infinite series, to Euler’s formula and
the exponential representation of complex numbers.

A small problem set follows each chapter, and an appendix contains
solutions to most. Subsequent revisions will include additional exercises. It
will be greatly appreciated if any who use these notes will continue to report
errors, omissions, and suggestions for improvement directly to the author,
who will endeavor to follow up.

MA/Ra, 24 April 2002
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COURSE OBJECTIVES

MA1042 MATRIX ALGEBRA

Upon completion of the course, the student should be able to perform the
following operations.

1. Solve rectangular systems of linear equations using Gaussian
elimination.

2. Write a system of linear equations in matrix form, and describe the
nature of the solutions (infinitely many, exactly one, or no solutions).

3. Perform algebraic operations on matrices: addition/subtraction,
multiplication, multiplication by a constant, raising to powers,
transposition.

4. Describe the elementary algebraic properties of matrix operations:
commutativity, associativity, etc.

5. Perform algebraic operations on partitioned matrices in terms of the
blocks.

6. Calculate the dot product of two n-tuples.

7. Explain matrix multiplication in three distinct ways: focusing on
individual elements, on combinations of columns, and on
combinations of rows.

8. Formulate the definition of the inverse of a matrix, and describe its
basic properties.

9. Find the inverse of a square matrix using Gaussian elimination.

10. Find the LU-decomposition of a matrix using Gaussian elimination
and recording the multipliers.

11. Find the rank of a matrix.

12. Compute the determinant of a square matrix using cofactor
expansion.

13. Describe the basic properties of determinants, and the effect on the
determinant of each of the elementary row operations.
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14. Use Cramer’s rule to solve small systems of linear equations.

15. Compute simple eigenvalues and associated eigenvectors of small
matrices, including those with complex eigenvalues.

16. Represent complex numbers in rectangular, exponential, and
trigonometric form, and be able to convert from any form to any
other.

17. Perform arithmetic operations (addition, subtraction, multiplication,
division, exponentiation) on complex numbers.

18. Determine the magnitude, argument, real part, imaginary part, and
conjugate of a complex number.

19. State and apply DeMoivre’s theorem.

20. State and apply Euler’s identity.

21. State and apply the Fundamental Theorem of algebra.
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Chapter 1

Systems of Linear Equations

Systems of linear equations arise naturally in an enormous number of
disciplines, ranging from the physical sciences and engineering to
management science, operations research, and, of course, mathematics.
The emphasis here is on working with such systems, rather than on
constructing them, so this preliminary edition of the text omits a discussion
of the myriad ways in which systems of linear equations can arise.

1.1 Linear Systems and Solution by Substitution

In the Cartesian plane, the equation of a line can be put in the form
ax+ by = c, where x and y are real variables, a, b, and c are real constants,
and at least one of a and b is nonzero. This is an example of the following
more general idea.

Definition: A linear equation in the variables x1, x2, . . . , xn is an
equation that can be put in the form

a1x1 + a2x2 + · · · + anxn = b, (1.1)

where b and the coefficients ai (1 ≤ i ≤ n) are constants.
Note that, for the equation (1.1) to be linear, every variable xi occurs

to the first power only, and no term in the sum involves products of
variables. Thus there are no occurrences of transcendental functions
(trigonometric or exponential functions, for example), and no occurrences
of the taking of roots. For example, the equations (a) 2x = 3 and (b)
x − 2y = 0 are linear, while the equations (c) x sinx+

√
y = 2 and (d)

x2 − 2xy = ez are not. In passing, it should be pointed out that a linear



inequality is similarly defined, but with one of <,≤, >, or ≥ taking the
place of equality in the preceding definition.

A solution to the linear equation (1.1) is an ordered set (s1, s2, . . . , sn)
of numbers with the property that a1s1 + a2s2 + · · · + ansn = b holds. The
solution set of (1.1) is the set containing all such solutions. To solve (1.1)
is to find the solution set.

A system of linear equations, also called a linear system, is a collection
of m > 1 linear equations in the n variables x1, x2, . . . , xn that we want to
solve simultaneously, i.e., we look for a set {x1, x2, . . . , xn} that
simultaneously solves each equation in the set. For example, the system{

x + 2y = 0
2x + y = 3

(1.2)

has the solution x = 2, y = −1. We say that two systems of linear
equations are equivalent if they have identical solution sets. For example,
the system {

x + 2y = 0
−4x − 2y = −6

is equivalent to 1.2.
A linear equation may be solved for any one of its variables in terms of

the remaining variables, so long as the variable in question has a nonzero
coefficient. For example, suppose we want to find all solutions to the
equation, 2x − 4y = 6. We could begin by solving for x, obtaining
x = 3 + 2y. We now see that to any choice of y there corresponds a value
of x, so the number of solutions is infinite. To describe the general
solution, which is the set of all solutions, we allow y to take on any real
value by introducing a parameter, say t, to replace y, obtaining

x = 3 + 2t, y = t, t ∈ R.

Note that the decision to solve for x was arbitrary; solving for y would
proceed along the same lines, and we would have

y =
1
2

t − 3
2

, x = t, t ∈ R.

There are several strategies at our disposal for solving linear systems.
The most elementary is substitution, which involves the sequential
elimination of variables from the system, the result at the (k + 1)st step
being an equivalent system in which the kth equation contains only the
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variables xk, . . . , xn. For example, suppose we want to solve (1.2) by
substitution. Let’s say that we choose initially to solve the first equation
for x, obtaining x = −2y. We then replace x with −2y in the second
equation, obtaining a new system,{

x + 2y = 0
− 3y = 3.

(1.3)

Finally, we solve (1.3) by back-substitution: from −3y = 3 we obtain
y = −1. Substituting y = −1 in x+ 2y = 0 we obtain x = 2, which agrees
with our previous solution to (1.2). In general, back-substitution solves for
the variables in reverse order relative to that in which they appear.

In order to facilitate this approach, a few observations are in order.
First, since a solution to a system of equations must simultaneously solve
each equation in the system, it follows that the order in which the
equations are written is irrelevant to the final outcome. For example, the
system of equations {

2x + y = 3
x + 2y = 0

(1.4)

is equivalent to (1.2). Second, if we multiply an equation by a nonzero
constant, we do not change the solution set of that equation.
Consequently, if we multiply one equation in a system by a nonzero
constant, we obtain an equivalent system. For example, (1.4) and{

4x + 2y = 6
x + 2y = 0

(1.5)

are equivalent. Finally, if Ei and Ej are distinct equations in a system,
then if we add a multiple of Ei to Ej , the resulting system is equivalent to
its predecessor. For example, by adding twice the first equation in (1.5) to
the second, we obtain {

4x + 2y = 6
9x + 6y = 12,

which is easily shown to be equivalent to (1.5).

1.2 Gaussian Elimination

We can exploit the observations made above to replace a system of
equations with an equivalent system that is easier to work with. For
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example, consider the system,

2x1 + x2 + x3 = 3
4x1 + 2x2 − x3 = 0
2x1 − x2 + 4x3 = 5.

(1.6)

We add (-2) times the first equation in (1.6) to the second, and (-1) times
the first to the third, obtaining


2x1 + x2 + x3 = 3

− 3x3 = −6
− 2x2 + 3x3 = 2.

(1.7)

We then swap the second and third equations in (1.7), obtaining

2x1 + x2 + x3 = 3

− 2x2 + 3x3 = 2
− 3x3 = −6,

(1.8)

and we’re ready for back-substitution. The third equation gives us x3 = 2.
Substituting this result into the second gives us x2 = 2. Finally, we
substitute both into the first equation to obtain x1 = −1/2.

This process is Gaussian elimination. When applied to a square system
(number of equations equals number of unknowns), the result is a
triangular system of equations, which lends itself to back-substitution.
Generally, we stop at this stage. We could, however, continue the process
by eliminating x3 from the second equation and both x2 and x3 from the
first. To begin, we add 1/2 times the second equation in (1.8) to the first,
obtaining 


2x1 + 5

2x3 = 4
− 2x2 + 3x3 = 2

− 3x3 = −6.
(1.9)

We then add 5/6 times the third equation in (1.9) to the first, and add the
third equation to the second, with the resulting system being


2x1 = −1

− 2x2 = −4
− 3x3 = −6.

This is a diagonal system of equations, even easier to solve then the
triangular system. The extended elimination process is called
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Gauss-Jordan elimination. There are situations in which Gauss-Jordan
elimination is desirable by virtue of the fact that it completely uncouples
the equations in the system. Nevertheless, in most cases Gaussian
elimination with back-substitution is the preferred method because of its
simplicity. If we make the simplifying assumption that at no stage in the
elimination are we confronted with the need to divide by zero, we can
summarize the process of Gaussian elimination on square systems as
follows. Assume that we have n equations in n unknowns.

1. We begin by adding suitable multiples of equation 1 to equations
2, . . . , n, introducing 0 as the coefficient on x1 in each equation.

2. Having introduced 0’s as the first k coefficients in each of equations
k + 1, . . . , n (1 ≤ k < n − 1), add suitable multiples of equation k + 1
to each of equations k + 2, . . . , n to introduce zeros as the coefficient
on xk+1 in equations k + 2, . . . , n.

3. When the elimination is complete, we begin the back-substitution
process by solving equation n for xn.

4. Having solved equations n, . . . , n − k (0 ≤ k < n− 1) for the variables
xn, . . . , xn−k, we substitute the values obtained into equation
n − k − 1 and solve for xn−k−1.

1.3 The Geometry of Linear Systems

Each of the systems of equations thus far has had a unique solution. As it
turns out, this is not always the case. The underlying geometric situation
is most easily described in the case of 2× 2 systems, i.e., systems of two
equations in two unknowns. The following three systems illustrate the
three possibilities. {

x + y = 0
x + y = 1,

(1.10)

{
x + y = 0
2x + y = 1,

(1.11)

{
x + y = 0
2x + 2y = 0.

(1.12)
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y=-x

y=1-x

-4

-2

0

2

4

y

-4 -2 0 2 4
x

Figure 1.1: Graphical representation of an inconsistent system.

In each system we have the equations for two lines in the plane. From
now on, for convenience, we refer to the plane as R2. A solution to such a
system describes the intersection(s) of the two lines. System (1.10) is
inconsistent , as depicted in Figure 1.1. The first equation refers to the line
y = −x, while the second refers to the line y = 1− x. These are parallel
lines with different y-intercepts, and so have no intersection. System (1.11)
has a unique solution (x, y) = (1,−1), the point of intersection of the lines
y = −x and y = 1− 2x. Figure 1.2 illustrates this situation. System (1.12)
has infinitely many solutions, since the second equation is simply a
multiple of the first; both describe the line y = −x.

In three dimensions (we subsequently refer to Euclidean 3-space as R3,
and generalize this notation in an obvious way), a linear equation
ax+ by + cz = d describes a plane. A system of k equations in three
unknowns therefore describes k planes in R3. The intersection of k planes
in R3 is either empty (no solution), a point (unique solution), a line
(infinitely many solutions), or a plane (infinitely many solutions). The
situation in more than three dimensions is more difficult to visualize, but is
perfectly analogous.

The geometry of linear systems can have unexpected side effects when
solutions are computed. This can be illustrated in the 2× 2 case, for
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Figure 1.2: Graphical representation of a system with exactly one solution.

simplicity. Suppose the lines described by the equations are nearly parallel.
Then a small perturbation of one line is likely to result in a large
perturbation in the point of intersection. For example, the lines
y = 1.4142x and y =

√
2x are very nearly parallel, but intersect only at

(0, 0). Thus the system,{
1.4142x − y = 0√

2x − y = 0,
(1.13)

has a unique solution given by (x, y) = (0, 0). Now suppose we perturb the
right-hand side just a bit, obtaining the system{

1.4142x − y = 0√
2x − y = 0.001.

Geometrically, all that has happened is that the line corresponding to the
second equation has been shifted very slightly. Its slope is unchanged, but
its y-intercept has changed. This system, too, has a unique solution
approximated by (x, y) = (73.7, 104.3). The system (1.13) is said to be
ill-conditioned , meaning that a small perturbation in the coefficients can
result in a large perturbation in the solution.
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Machine computation itself can result in unexpected errors,
independent of the geometry of the system. While such numerical issues
are beyond the scope of this course, we illustrate one sort of difficulty that
can arise with the following example. Consider the system,{

0.0001x + y = 1
x + y = 2,

(1.14)

The exact solution (approximated to four decimal places) is
(x, y) = (1.0001, 0.9999). If we solve by Gaussian elimination, and round to
three significant digits, we find the “solution” (x, y) = (0, 1). On the other
hand, if we interchange the equations in (1.14) before elimination and
again round to three significant digits, we find the approximate solution
(x, y) = (1, 1), which is much closer to the actual solution.

1.4 Matrices and Linear Systems

A matrix is a rectangular array of numbers. If a matrix A has m rows and
n columns, we say that A is an m × n matrix. We associate matrices with
systems of linear equations in a useful way. Consider the linear system


x1 − x2 + x3 = 6
4x1 + 2x2 − x3 = 0
5x1 + x2 + x3 = 12.

(1.15)

The relative positions of x1, x2, and x3 are identical within each of the
three equations. As long as we agree on this, we might just as well
suppress the variables. We can represent the system (1.15) by the
corresponding augmented matrix

 1 −1 1 6
4 2 −1 0
5 1 1 12


 .

The three types of operations that we performed on a system of equations
to find an equivalent, simpler, system become elementary row operations
that we perform on the augmented matrix. These operations are:

1. Interchange two rows.

2. Multiply any row by a nonzero constant.
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3. Add a constant multiple of any row to another.

The following example illustrates the two approaches.




x1 − x2 + x3 = 6
4x1 + 2x2 − x3 = 0
5x1 + x2 + x3 = 12.


 1 −1 1 6
4 2 −1 0
5 1 1 12


 .

Linear System Augmented Matrix




x1 − x2 + x3 = 6
6x2 − 5x3 = −24

5x1 + x2 + x3 = 12.


 1 −1 1 6
0 6 −5 −24
5 1 1 12


 .

Add (−4) times first equa-
tion to second

Add (−4) times first
row to second.




x1 − x2 + x3 = 6
6x2 − 5x3 = −24
6x2 − 4x3 = −18.


 1 −1 1 6
0 6 −5 −24
0 6 −4 −18


 .

Add (−5) times first equa-
tion to third

Add (−5) times first
row to third.




x1 − x2 + x3 = 6
6x2 − 5x3 = −24

x3 = 6.


 1 −1 1 6
0 6 −5 −24
0 0 1 6


 .

Add (−1) times second equa-
tion to third.

Add (−1) times second
row to third.

The solution can now be calculated by back-substitution: The third
equation gives x3 = 6. Substitution into the second gives x2 = 1.
Substitution of both into the first gives x1 = 1.

If a matrix B can be obtained from a matrix A by a sequence of
elementary row operations, then A and B are said to be row-equivalent . If
the row operations are those of Gaussian elimination, then the final form
for the matrix is called row-echelon form, which is defined by the following
three properties:

1. Any row containing only zeros follows all rows containing nonzeros.

2. If i < j, the column containing the first nonzero entry in row i
precedes the column containing the first nonzero entry in row j. The
first nonzero entry in any row is the pivot , or leading entry .
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A =


 1 0 2 5
0 2 4 0
0 0 −1 −1


 B =


 2 1 2 6
0 1 3 1
0 0 2 2


 C =


 1 0 0 3
0 1 0 −2
0 0 1 1




Figure 1.3: A, B, and C are row-equivalent.

3. All entries below any pivot are zeros.

Using Gaussian elimination, any matrix can be transformed to a
row-equivalent matrix that is in row-echelon form. There is some
flexibility, though, in choosing multipliers, in selecting row interchanges,
etc. Consequently, the row-echelon form achieved is not unique. For
example, matrices A and B in Figure 1.3 are row-equivalent. It is
sometimes desirable to find a canonical form, one that is uniquely
associated with A. We can accomplish this by performing Gauss-Jordan
elimination and then taking one additional step. We normalize the pivot
in each row, by multiplying that row by the reciprocal of the pivot. The
result is a matrix in reduced row-echelon form, which means that

1. the matrix is in row-echelon form,

2. the pivot in any row containing nonzeros is a 1, and

3. all entries above the pivot in any row containing nonzeros are zeros.
(Combined with (1), this means that a pivot is the only nonzero in
its column.)

For any matrix A, the reduced row-echelon form is unique. For
example, the reduced row-echelon form associated with A and B in
Figure 1.3 is C.

1.5 Pivot and Free Variables

Consider the following matrix A, which can be interpreted as the
row-echelon form of the augmented matrix for a linear system, also shown.
If we attempt to apply back-substitution to the system, we have some
difficulty due to the fact that every equation in the system involves at least
two variables.

A =


 2 3 −1 5 2
0 3 2 −1 2
0 0 −2 −8 4






2x1 +3x2 −x3 +5x4 = 2

3x2 +2x3 −x4 = 2
−2x3 −8x4 = 4
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Variables x1, x2, and x3 correspond to the pivot entries in A. For this
reason, they are called pivot variables. They are the dependent variables in
the system1, with their values determined by the right-hand side and by
x4. We refer to x4 as a free, or independent , variable. By moving the free
variable to the right-hand side, we obtain a system that can be solved by
back-substitution:


2x1 + 3x2 − x3 = 2 − 5x4

3x2 + 2x3 = 2 + x4

− 2x3 = 4 + 8x4

Since x4 remains independent, we assign to x4 a parameter, t. As t is
allowed to vary, we obtain an infinite number of solutions, i.e., our solution
is (x1, x2, x3, x4) = (−3− 9t, 2 + 3t,−2− 4t, t), where t is any real number.
For example, both (−3, 2,−2, 0) and (6,−1, 2,−1) are solutions. It is
possible to have multiple free variables, as in the following example. As
above, we interpret A to be the augmented matrix for the indicated system.

A =


 3 −2 1 3 1 14
0 0 2 5 −3 2
0 0 0 0 −3 −6






3x1 − 2x2 + x3 + 3x4 + x5 = 14

2x3 + 5x4 − 3x5 = 2
−3x5 = −6

The pivot variables are x1, x3, and x5; x2 and x4 are free. At this
point, we parameterize the free variables by letting x2 = s, x4 = t, and
move them to the right-hand side, obtaining


3x1 + x3 + x5 = 14 + 2s − 3t

2x3 − 3x5 = 2− 5t
−3x5 = −6

We now apply back-substitution. The third equation is easy: x5 = 2.
Substituting x5 = 2 in the second equation, we have 2x3 − 6 = 2− 5t, or
x3 = 4− 5

2 t. The first equation becomes 3x1 = 14 + 2s − 3t − (4− 5
2t)− 2,

which simplifies as x1 = 8
3 +

2
3s − 1

6t. So we have an infinite number of
solutions described by

(x1, x2, x3, x4, x5) = (
8
3
+
2
3

s − 1
6

t, s, 4− 5
2

t, t, 2).

1Since a linear equation can be solved for any of its variables whose coefficients are
nonzero, it is frequently possible to choose a variable other than the pivot to designate as
the dependent variable in any row. However, this is implicitly a column interchange, and
can lead to headaches when doing hand computation. It is strongly recommended that
students stick to the convention of interpreting the pivot variable in any row as dependent
only upon the variables to its right.
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The parameters s and t represent arbitrary real numbers; since we may
replace either with any real number, we have infinitely many solutions.

1.6 Homogeneous and Nonhomogeneous

Systems; the General Solution

Each of the systems of equations that we have examined so far has had the
property that the right-hand side has contained nonzeros. Such a system is
called nonhomogeneous; a system in which the right-hand side contains
only zeros is called homogeneous. A homogeneous system of m equations
in n unknowns has the form

a11x1 + a12x2 + · · · + a1nxn = 0
a21x1 + a22x2 + · · · + a2nxn = 0

...
am1x1 + am2x2 + · · ·+ amnxn = 0

Such a system always has at least one solution in which
x1 = x2 = · · · = xn = 0. This is the trivial solution. A solution containing
at least one nonzero is nontrivial . The general solution to a system of
equations describes all solutions to the system. We postpone a thorough
discussion of the general solution until we have developed a more compact
way of representing such systems, but illustrate the idea with the following
example.

Consider the system of equations,


x1 + x2 + x3 = 0
−x2 − x3 + 2x4 = 0

−x4 = 0

The pivots are x1, x2, and x4, with x3 free. Let x3 = s. From the third
equation, we have x4 = 0. The second equation gives x2 = −s, and the
first gives x1 = −x2 − x3 = 0. The general solution to the homogeneous
system is then (x1, x2, x3, x4) = (0,−s, s, 0). Setting s = 1, we have
(x1, x2, x3, x4) = (0,−1, 1, 0), a basic solution. For any fixed s, we obtain a
basic solution, and by letting s remain a free parameter we obtain the
general solution. We return to the discussion of homogeneous and
nonhomogeneous systems, and of their solutions, in a later section.
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1.7 Summary

In this introductory chapter, we have reviewed the definitions of linear
equation and system of linear equations, and have seen the fundamental
solution techniques for solving systems of linear equations: substitution
and Gaussian elimination. The goal of each approach is to arrive at an
equivalent system of equations that can be solved by back-substitution. As
a bookkeeping convenience, we have introduced matrices. The
fundamental matrices associated with a system of linear equations are the
coefficient matrix , which represents the coefficients of the variables, and
the augmented matrix , which consists of the coefficient matrix with an
additional column appended to the right side; this new column contains
the constants from the right-hand side of the system. By using elementary
row operations, we apply Gaussian elimination directly to the augmented
matrix. We distinguish between pivot , or dependent variables, and free, or
independent variables: a system of equations with no free variables has at
most one solution, while a system of equations with at least one free
variable can have either no solution or infinitely many solutions. We have
taken a very brief look at the geometry of linear systems and at some of
the difficulties that can arise when we attempt to solve these systems. We
have not yet looked at matrices as algebraic objects in their own right, but
shall do so shortly.
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1.8 Exercises for Chapter 1

1. Which of the following equations is linear? Explain.

(a) x − 2xy = 6

(b) 11x − 26y + z − cos s = et

(c) 8x+ 6y − 47z = 5
(d) 5x2 − 3 = 0

2. Solve each of the following systems, if possible, by substitution.

(a)

{
3x2 = 6

3x1 + 3x2 = 1

(b)




x1 + 2x2 + x3 = 2
3x1 + 8x2 + x3 = 12
−x1 + 2x2 − 5x3 = 2

(c)




x1 + 2x2 + x3 = 2
3x1 + 8x2 + x3 = 12
−x1 + 2x2 − 3x3 = 2

3. Solve each of the solvable systems from (2), by applying Gaussian
elimination.

4. Perform Gaussian elimination on the augmented matrix for each of
the following systems. If any solution involves free variables,
introduce parameters as needed. Describe the general solution to
each system.

(a)

{
x1 + 2x2 + x3 = 1

x2 + x3 = 1

(b)




x1 + x2 + x3 + x4 + x5 = 5
x1 + x5 = 3
x1 − x2 = 3

(c)




−x1 + 2x2 − x3 = −4
4x1 − 6x2 − x3 = 7
3x1 + 4x2 + 2x3 = 15

5. For each of the following systems of two equations in two unknowns,
perform the following steps:
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(a) Sketch the system.

(b) Solve the system.

(c) Comment on the stability of the solution of either system to
small changes in the coefficients.

(i)

{
x+ y = 3

1.01x + y = 3.01
(ii)

{
x+ y = 3

1.01x + y = 3.03
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Chapter 2

The Algebra of Matrices

Matrices were introduced in the preceding chapter as a notational
convenience, but it turns out that they are interesting and useful algebraic
objects in their own right. The goal of this chapter is to introduce the
fundamental operations of the algebra of matrices.

2.1 Matrix Operations

It turns out that a number of operations can be defined on matrices,
enabling us to treat matrices as algebraic objects. Initially, we look at
multiplication by a scalar, addition, subtraction, and matrix
multiplication. While division is not defined, we shall see later on that
under certain circumstances we can define a multiplicative inverse for a
matrix. As a notational convenience, if the i, j-entry of A is aij , we use A
and (aij) interchangeably.

The simplest of matrix operations is multiplication of a matrix by a
scalar. If A = (aij) is an m × n matrix, and if k is a scalar, then the
product kA is defined by kA = (kaij).

example: Given A =

[
2 0 1

−2 4 0

]
, then

2A = (2)

[
2 0 1

−2 4 0

]
=

[
4 0 2

−4 8 0

]
.

Addition of matrices is defined componentwise, i.e., if A = (aij) and
B = (bij) are both m × n matrices, then their sum is A+B = C = (cij),
where cij = aij + bij . The difference A − B is defined by



A − B = A+ (−B) = A+ (−1)B. Thus subtraction, like addition, is
performed componentwise.

example: Let A =


 4 −1 2 0

−2 1 1 3
5 5 −3 0


, and B =


 −4 −1 0 4

−3 0 0 3
2 −2 −3 1


.

Then A+B =


 0 −2 2 4

−5 1 1 6
7 3 −6 1


, and A − B =


 8 0 2 −4
1 1 1 0
3 7 0 −1


.

The first matrix operation that we consider that is defined in a way
that might not seem intuitively obvious is matrix multiplication. If
A = (aij) is an m × n matrix, and if B = (bij) is an n × p matrix, then

their product is the m × p matrix AB = C = (cij), where cij =
n∑

k=1

aikbkj.

example: With A =

[
2 0 −1
1 1 0

]
and B =


 1 −1

−2 1
0 5


, we have

AB =

[
2(1) + 0(−2) + (−1)(0) 2(−1) + 0(1) + (−1)(5)

1(1) + 1(−2) 1(−1) + 1(1)

]
=

[
2 −7

−1 0

]
.

In this example, the product BA is also defined and is found to be

BA =


 1(2) + (−1)(1) 1(0) + (−1)(1) 1(−1) + (−1)(0)
(−2)(2) + 1(1) (−2)(0) + 1(1) (−2)(−1) + 1(0)
0(2) + 5(1) 0(0) + 5(1) 0(−1) + 5(0)


 =


 1 −1 −1

−3 1 2
5 5 0


 .

If A is an m × n matrix, then the transpose of A, denoted by AT , is the
n × m matrix whose columns are precisely the rows of A, i.e., if A = (aij),
then AT = (bij), where bij = aji.

example: Given A =

[
2 −1 3
0 −3 3

]
, then AT =


 2 0

−1 −3
3 3


.

The operations described above extend to transposes in a natural way,
with the possible exception of multiplication of transposes. This should
not be too surprising, since if A is m × n and B is n × p, then while the
product AB is defined, the product AT BT is defined only if m = p. So it is
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not generally the case that (AB)T = AT BT . On the other hand, BT is
p × n, and AT is n × m, so the product BT AT is defined. Could it be that
(AB)T = BT AT ?

example: Suppose we have

A =

[
2 1 3
1 4 0

]
, and B =


 1 2
3 1
0 1


. Then

AB =

[
5 8
13 6

]
, AT =


 2 1
1 4
3 0


 , and BT =

[
1 3 0
2 1 1

]
.

We find that

(AB)T =

[
5 13
8 6

]
=

[
1 3 0
2 1 1

]  2 1
1 4
3 0


 = BT AT .

This is always the case. If we denote by (AB)Tij the i, j-entry of (AB)T

and by (AB)ij the i, j-entry of the product AB, then we have

(AB)Tij = (AB)ji

=
n∑

k=1

ajkbki

=
n∑

k=1

at
kjb

t
ik

=
n∑

k=1

bt
ikat

kj

= (BT AT )ij,

and it becomes clear that the general case is that (AB)T = BT AT . As
suggested previously, the other operations behave as expected, i.e.,
(A+B)T = AT +BT and (A − B)T = AT − BT . Naturally, the transpose
of the transpose of A is A, i.e., (AT )T = A.

2.2 Vectors in The Plane

This brief discussion will concern objects in the plane, but it all generalizes
upward, to objects in 3-space and in higher-dimensional spaces. A vector
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in the plane can be viewed as a directed line segment, i.e., a line segment
with an orientation that enables us to distinguish its initial point from its
terminal point. Given a vector, say v, we are free to move it about in the
plane; it is still v as long as we do not rotate it and so alter its orientation.
For convenience, we define the standard position for a vector to be such
that its initial point is the origin. Thus if, say, x is the vector with initial
point (0, 0) and terminal point (1, 2), and y is the vector with initial point
(2, 3) and terminal point (3, 5), we simply view y as a copy of x that has
been displaced 2 units to the right and 3 units upward. But if x and y are
twins, there must be some way to refer to either one, independent of
location. The simplifying key lies in the fact that x has its initial point at
the origin. We can then associate x with its terminal point, knowing
precisely where its initial point lies. For reasons that will eventually
become clear, we do not denote x by the ordered pair (1, 2), but instead by

the 2× 1 matrix x =

[
1
2

]
. This is a column vector . The transpose of a

column vector is a row vector1, and vice versa. The notation that we adopt
for the transpose of a column vector is the usual n-tuple representation,

i.e.,




x1

x2
...

xn




T

= (x1, x2, . . . , xn). We will frequently make use of this as a

notational convenience, principally to save space.

2.3 Vectors in Rn and the Scalar Product

Motivated by the preceding remarks, we may define a vector to be an n× 1
matrix2, where n > 0 is some fixed positive integer. Note that this allows
us to view the individual columns (and the transposes of individual rows)
in an m × n matrix as vectors. This turns out to be a remarkably useful
point of view. As in the case of the coefficient and augmented matrices
associated with a system of linear equations, we assume here that the
individual entries, or components, in a vector are real numbers. The space
Rn is the set of all such n × 1 vectors. In general, the components of a
matrix or of a vector are called scalars; for our immediate purposes a
scalar is simply a real number. We will relax this later on, allowing

1Some authors deny the existence of row vectors, but it can be useful to allow such
things to exist. Always check local rules!

2This is not the general definition, but is sufficient for our present purposes.
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complex scalars. With experience, one is able to get by on context alone,
but in order to readily distinguish vectors from scalars, in this text we

label a vector with a boldface lowercase letter3, e.g., x =

[
x1

x2

]
. The

sum of two vectors x and y that have the same number n of components is

simply their matrix sum: x+ y = z =




z1

z2
...

zn


, where zi = xi + yi. Thus


 23
1


+


 12
4


 =


 35
5


; the difference is defined similarly, with

zi = xi − yi in the expression above. If x and y have different numbers of
components, then their sum and difference are of course undefined. The
product of a scalar k and vector v is, in keeping with the definition of a
scalar multiple of any matrix, the vector kv, whose ith component is k

times the ith component of v. For example, if x =


 02
1


, then for any

scalar k, kx =


 0
2k
k


.

Note that scalar multiples, sums, and differences of vectors are
themselves vectors. This is not the case with the product of vectors that is
of interest to us here. The product that we describe is the scalar product,
or dot product. As the following definition suggests, the reason that this
product is called a scalar product is that the result is a scalar rather than a
vector. The other name refers to the notation that we see in the definition.

Definition: If x =




x1

x2
...

xn


 and y =




y1

y2
...

yn


 are vectors, then their dot

product is given by

x · y =
n∑

k=1

xkyk = x1y1 + x2y2 + · · ·+ xnyn.

3This is difficult to manage on a blackboard, so other conventions are used in the
classroom.
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example: If x =


 3

−2
1


 and y =


 −1
2
5


, then we have

x · y = 3 · (−1) + (−2) · 2 + 1 · 5 = −2.

The dot product has a number of uses. In the Cartesian plane, for
example, if we consider the vector (the geometric object, that is) with
initial point at the origin and terminal point at (x1, x2), we can associate

with this vector the algebraic vector x =

[
x1

x2

]
. By the Pythagorean

theorem we know that the distance from the origin to (x1, x2) is given by
d(x1, x2) =

√
x2

1 + x2
2. But this is just the square root of the dot product of

x with itself! In linear algebra, this is called the norm4 of x, denoted ‖x‖.
As we’ve just seen, we have ‖x‖ = √

x · x. This generalizes; it matters not
whether x has two components or two hundred. For another application
with a geometric flavor, we consider the problem of computing the angle
between two vectors. If x and y are two vectors with the same number,
say n, of components, we can view these vectors as the algebraic
representations of the points in Euclidean n-space whose coordinates are
the components of x and y, respectively. In R2, as a consequence of the
Law of Cosines, it turns out that the angle θ between vectors x and y is
given by

cos θ =
x · y

‖x‖‖y‖ .

This, too, generalizes to Euclidean n-space. Especially useful is the
observation that two vectors x and y in R2 or R3 are perpendicular if and
only if the angle between them is θ = π/2 if and only if cos θ = 0 if and
only if x · y = 0. So we have a handy test for perpendicularity. This carries
over into Rn for n > 3, although we no longer refer to such vectors as
perpendicular. Instead, we refer to such vectors as being orthogonal .

example: If x =

[
2
−3

]
and y =

[
1
−1

]
, we find that the cosine of the

angle θ between them is given by θ = arccos
5√
13

√
2
= arccos

5√
26
radians.

Finally, if we consider our definition of matrix multiplication, then it is
easy to see that the i, j-entry of the product AB can be described as the
dot product of the transpose of row i from A with column j from B.

4This are many vector norms in use, but this is the only one we’ll mention here.
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2.3.1 Properties of Matrix Operations

Matrix operations enjoy some, but not all, of the properties held by the
analogous operations defined on real numbers. For example, it is easy to
show that matrix addition is both commutative and associative, i.e., if A,
B, and C are m × n matrices, then A+B = B +A and
A+ (B +C) = (A+B) +C. Since subtraction of real numbers has neither
the commutative nor the associative property, subtraction of matrices has
neither property. Matrix multiplication distributes over addition (and over
subtraction, since subtraction is defined in terms of addition): if the
dimensions are such that the operations are defined, then
A(B +C) = AB +AC and (A+B)C = AC +BC. Matrix multiplication
is associative: if the operations are defined, then A(BC) = (AB)C. Matrix
multiplication, though, is not commutative, i.e., AB �= BA in general. If
one considers that for A and B m × n and n × m, respectively, AB is
m × m and BA is n × n, this might not be too surprising. But even if A
and B are square matrices, commutativity can fail.

example: If A =

[
1 2
0 2

]
and B =

[
1 0
2 −1

]
, then AB =

[
5 −2
4 −2

]
,

but BA =

[
1 2
2 2

]
.

There are a few matrices that arise so often that they deserve special
attention. The m × n zero matrix is the m × n matrix 0, whose entries are
all zeros. This is the additive identity : if A is any other m×n matrix, then
A+ 0 = 0+A = A. For any matrix A, we may construct the additive
inverse −A, where −A = (−1)A. It then follows that
A+ (−A) = −A+A = 0. The identity matrix of order k, denoted Ik, is a
k × k matrix whose main diagonal entries (the entries in row i, column i
for each 1 ≤ i ≤ k) are 1’s and all other entries are zeros. This is the
multiplicative identity: if A is m × n, then ImA = AIn = A.

example: The 3× 3 identity matrix is I3 =


 1 0 0
0 1 0
0 0 1


. Given

A =


 1 2 −5

0 2 −2
−4 0 1


 it is easily verified that AI3 = I3A = A.
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Generally, the subscript notation is unnecessary for the identity matrix
and is consequently omitted. We refer to the identity matrix as I, and let
context determine its dimensions. So if, say, A is m× n, then any reference
to AI must refer to In, while any reference to IA must refer to Im.

An upper triangular (resp. lower triangular) matrix is an n × n matrix
in which all entries below (resp. above) the main diagonal are zeros. Note
that an upper (lower) triangular matrix may have either zeros or nonzeros
on and above (below) the main diagonal. If A and B are both n × n upper
triangular matrices, then it is not difficult to show that the product AB is
also upper triangular: if AB = C = (cij), then consider an entry cij for
i > j. This is given by

cij =
n∑

k=1

aikbkj

=
j∑

k=1

aikbkj +
n∑

k=j+1

aikbkj

=
j∑

k=1

0 · bkj +
n∑

k=j+1

aik · 0

= 0.

The analogous result holds for lower triangular matrices.
A unit triangular matrix is a triangular matrix having only 1’s on the

main diagonal. With only a little extra work, the preceding argument can
be modified to show that the product of unit upper (lower) triangular
matrices is unit upper (lower) triangular. This will prove useful soon, when
we look at a particular matrix factorization.

Finally, some matrices enjoy the property that they have multiplicative
inverses. Our principal concern is the inversion of square matrices.
(Properly rectangular matrices can have distinct left and right inverses, but
inversion of square matrices is for us the more valuable theoretical tool.)

Definition: Given a square matrix A, if there exists a matrix B
(necessarily square) such that AB = BA = I, then we say that B is the
inverse of A, denoted by B = A−1. Note that the inverse of a square
matrix might not exist. A square matrix that possesses no inverse is called
singular ; in Chapter 3 we will find a nice theoretical characterization of
singular matrices.

While actually computing such inverses presents intractable difficulties
in the general case, it can be useful to obtain inverses of small matrices.
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This is especially true in academic settings, where the utility of obtaining
inverses of small matrices outweighs any drawbacks associated with
computation of inverses in general.

2.3.2 Block-Partitioned Matrices

Suppose A is an m × n matrix. A submatrix of A is induced by any subset
of the rows together with any subset of the columns. For example, if

A =



1 2 −3 2 3
0 −2 1 2 1
2 2 0 5 1
4 3 −4 −4 0


, the submatrix induced by rows 2 and 4 and

columns 2 and 3 is B =

[
−2 1
3 −4

]
. A block in a matrix A is a submatrix

induced by contiguous rows and contiguous columns. For example, we
could think of the matrix A, above, as the 2× 2 block-partitioned matrix

A′ =

[
C D
E F

]
, where C =


 1 2
0 −2
2 2


, D =


 −3 2 3

1 2 1
0 5 1


,

E =
[
4 3

]
, and F =

[
−4 −4 0

]
.

It is not hard to see that if A and B are block-structured matrices with
the appropriate numbers of blocks in the appropriate configurations, then
the product AB can be described in terms of the blocks.

example: Suppose A =

[
A1 A2

A3 A4

]
and B =

[
B1 B2 B3

B4 B5 B6

]
, with the

dimensions of A1, A2, A3 and A4, respectively, given by j × k, j × (n − k),
(m − j)× k, and (m − j)× (n − k) and with the dimensions of B1, . . . , B6,
respectively, given by k × l, k × m, k × (p − l − m), (n − k)× l,
(n − k)× m, and (n − k)× (p − l − m). Then we may view the product as

AB =

[
A1 A2

A3 A4

] [
B1 B2 B3

B4 B5 B6

]

=

[
A1B1 +A2B4 A1B2 +A2B5 A1B3 +A2B6

A3B1 +A4B4 A3B2 +A4B5 A3B3 +A4B6

]
.

This view will prove useful soon, when we develop a method for
computing (multiplicative) inverses of small matrices by hand, and is also
useful in more advanced topics, both theoretical and applied.
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2.3.3 Alternate Views of Matrix Multiplication

We can apply the results of the preceding section immediately. Matrix
multiplication has been defined in terms of dot products, i.e., if A has n

columns and B has n rows, then AB = C = (cij), then cij =
n∑

k=1

aikbkj, the

dot product of row i of A with column j of B. Here are a couple of
additional views.

A linear combination of n × 1 vectors v1,v2, . . . ,vk is a sum of the
form c1v1 + c2v2 + · · ·+ ckvk, where c1, c2, . . . , ck are scalars. The set of all
such combinations is called the span of the set S = {v1,v2, . . . ,vk} First,
suppose that we think of A as a row of columns. That is,
A =

[
a1 a2 · · · an

]
, and suppose x is a vector with n components

x1, . . . , xn. Then if we expand the product Ax, we have

Ax =




a11x1 + a12x2 + · · · + a1nxn

a21x1 + a22x2 + · · · + a2nxn
...

...
...

am1x1 + am2x2 + · · · + amnxn




=
[

x1a1 + x2a2 + · · · + xnan

]
. (2.1)

So Ax is a linear combination of the columns of A.
Now consider the product AB, where A is m × n and B is n × p. Then

AB = A
[

b1 b2 · · · bp

]
=
[

Ab1 Ab2 · · · Abp

]
.

That is, each column of AB is a linear combination of the columns of A.
We can take a similar approach in terms of rows. First consider the result
of multiplying an n × p matrix B from the left by a the transpose of an
n × 1 vector y. Expanding B in terms of its rows, we have

yT B =
[

y1 y2 · · · yn

]



b1

b2
...

bn


 =

[
y1b1 + y2b2 + · · ·+ ynbn

]
,

that is, yT B is a linear combination of the rows of B. If we now expand A

as A =




aT
1

aT
2
...

aT
m


, we have AB =




aT
1 B

aT
2 B
...

aT
mB


 , i.e., the ith row of AB is a
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linear combination of the rows of B.

2.4 Linear Independence, Rank

For a moment, suppose that we are considering vectors in the plane. If
x = ky, with k a scalar, then it is not hard to see that x − ky = 0. It is
also obvious (perhaps a sketch is necessary?) that x and y are collinear,
which is to say that they lie on a common line. Since we are doomed to
consider vectors in environments other than the plane, we need a way to
generalize this observation. Let v1,v2, . . . ,vk be vectors. If the equation,

c1v1 + c2v2 + · · ·+ ckvk = 0 (2.2)

has only the trivial solution c1 = c2 = · · · = ck = 0, then the set
S = {v1,v2, . . . ,vk} is said to be linearly independent , else S is linearly
dependent. Why linearly dependent? In the plane, it is clear. More
generally, suppose (2.2) has a nontrivial solution in which, say, ci �= 0.
Then we can write vi as vi = −1

ci

∑
j �=i

cjvj, so vi can be expressed as a

linear combination of the vectors v1, . . . ,vi−1,vi+1, . . . ,vk, and we then
say that vi is dependent upon them. So in any linearly dependent set we
can find at least one vector that can be described as a linear combination
of the others.

When we use Gaussian elimination to transform a matrix A to
row-echelon form, then the nonzero rows that remain are linearly
independent, as are the columns containing the pivots. The number of
linearly independent rows (or of linearly independent columns, since it
turns out that these numbers match) is called the rank of A. This gives us
a useful test for linear independence of a set S = {v1,v2, . . . ,vk} of vectors
from Rn: Let v1,v2, . . . ,vk be the columns of a n × k matrix A. If the
homogeneous equation Ax = 0 has nontrivial solutions, it follows from 2.1
that the vectors in S are linearly dependent. Moreover, if x is a nontrivial
solution to Ax = 0, then the entries in x tell us how to express some
element of S as a linear combination of the remaining elements of S.

example: Let {a1,a2,a3} be the set of columns of A =

[
1 2 3
2 0 1

]
.

Performing Gaussian elimination, we find a row-echelon form B for A, i.e.,

B =

[
1 2 3
0 −4 −5

]
. The free variable is x3. Letting x3 = s and solving

−4x2 = 5s, we have x2 = −5
4 s; solving x1 + 2x2 = −3s, we have x1 = −1

2 s.
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So we have −1
2 a1 + −5

4 a2 + a3 = 0. This can be solved for any of a1, a2, a3,
e.g., a3 = 1

2a1 + 5
4a2, and the linear dependence of the three vectors is

made explicit.

2.5 Vector Spaces and Linear Transformations

Let f : D → R be a function. If f has the property that
f(rx1 + x2) = rf(x1) + f(x2) for all x1, x2 in D, then f is said to be a
linear function. We typically call functions f : Rn → Rm linear
transformations, or linear operators. It turns out that if f : Rn → Rm is a
linear transformation then there exists an m × n matrix A = Af such that
f(x) = Ax for all vectors x in Rn. So the study of linear transformations
and the study of matrices are intimately connected. Before one can fully
understand either, it is necessary to develop additional machinery. We
offer here only thumbnail descriptions; for a full development, see any
standard text on linear algebra.

A vector space V is a set that is closed under scalar multiplication and
addition and that satisfies the following properties:

1. Commutativity of Addition: for all vectors x,y ∈ V ,

x+ y = y + x.

2. Associativity of Addition: for all vectors x,y, z ∈ V ,

x+ (y + z) = (x+ y) + z.

3. Additive identity: there exists 0 ∈ V such that x+ 0 = 0+ x = x for
all vectors x ∈ V .

4. Additive inverse: for any x ∈ V , there exists −x ∈ V such that

x+ (−x) = (−x) + x = 0.

5. Distributivity: for any scalars r, s and vectors u,v ∈ V ,

(a) r(u+ v) = ru+ rv.

(b) (r + s)u = ru+ su.

6. Associativity of Scalar Multiplication: for any scalars r, s and vector
v ∈ V , (rs)u = r(su).
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7. Identity of Scalar Multiplication: for any vector u ∈ V , 1u = u.

Examples abound. For instance, the real numbers, Rn for any integer
n, the set of all n × n matrices are all vector spaces. If V is a vector space,
then any subset S of V that is itself a vector space is called a subspace of
V . To illustrate, we need look no further than R2; a line through the
origin in R2 is a subspace of R2.

Of particular importance in the study of any linear transformation
T : D → R are the following sets:

1. The kernel of T , given by ker(T ) = {x ∈ D|T (x) = 0}.
2. The range of T , given by R(T) = {y ∈ R|y = T(x) for some x ∈ D}.
If T : Rn → Rm, then T (x) = Ax for an m × n matrix A = AT , and

the kernel of T is simply the solution set of the homogeneous equation
Ax = 0, which we already know how to find. It is not hard to show that
this is a subspace of Rn. In the lore of linear algebra and matrix theory,
this subspace is called the nullspace of A. The range of T is a subspace of
Rm, typically called the range, or column space, of A. We already know
from §2.2.2 that if y = Ax then y is a linear combination of the columns of
A; the column space of A is therefore the span of the set {a1,a2 . . . ,an} of
columns of A.

We are now in a position to compactly describe the general solution to
a system of equations. Rewriting the system in matrix form as Ax = y, it
is straightforward to see that if this is the homogeneous equation (i.e.,
y = 0), then the general solution is simply the nullspace of A. So consider
the nonhomogeneous case. Suppose that we have in hand a particular
vector x0 that satisfies this equation. If z is an element of the nullspace of
A, then

A(x0 + z) = Ax0 +Az

= y + 0

= y,

and it follows that the general solution of our system is the collection of all
vectors of the form x = x0 + z, where Ax0 = y and Az = 0.

2.6 Elementary Matrices and Matrix Inverses

If a single elementary row operation e is applied to the n × n identity
matrix, the result E = e(I) is called an elementary matrix . In general, we
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obtain Ei(c) by multiplying row i of the identity matrix by c, Eij by
interchanging rows i and j of the identity matrix, and Eij(c) by adding c
times row i to row j in the identity matrix.
example: If we multiply row 2 of I3 by (−2), we obtain the matrix

E2(−2) =

 1 0 0
0 −2 0
0 0 1


 .

By interchanging rows 2 and 3 in I3, we obtain the matrix

E23 =


 1 0 0
0 0 1
0 1 0


 .

If we add twice row 1 to row 2 in I3, we obtain

E12(2) =


 1 0 0
2 1 0
0 0 1


 .

Theorem 1 Let e be an elementary row operation with corresponding
m × m elementary matrix E = e(I). Then for any m × n matrix A,
e(A) = EA, i.e., the elementary row operation can be performed on A by
multiplying A from the left by E.

example: Let

A =


 1 2 4 1
2 −2 3 3
1 0 2 1


 , E1 =


 1 0 0

−2 1 0
0 0 1


 ,

E2 =


 1 0 0

0 1 0
−1 0 1


 , E3 =


 1 0 0
0 1 −3
0 0 1


 , and E4 =


 1 0 0
0 0 1
0 1 0


 .

Then E1A =


 1 2 4 1
0 −6 −5 1
1 0 2 1


 , E2(E1A) =


 1 2 4 1
0 −6 −5 1
0 −2 −2 0


 ,
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E3(E2E1A) =


 1 2 4 1
0 0 1 1
0 −2 −2 0


 , and E4(E3E2E1A) =


 1 2 4 1
0 −2 −2 0
0 0 1 1


 .

Intuitively, any elementary row operation is easily reversed. The effect
of multiplying row i by k �= 0 can be reversed by multiplying row i by 1/k.
The effect of interchanging rows i and j can be reversed by repeating the
interchange. The effect of adding k·row i to row j can be reversed by
adding −k·row i to row j. For each of the three operations, we have
defined an inverse operation. One might conjecture at this point that if we
multiply an elementary matrix by the elementary matrix corresponding to
the inverse operation we will obtain I as a result, and this is indeed the
case.

example: If we multiply E1, above, by B =


 1 0 0
2 1 0
0 0 1


, we have

E1B =


 1 0 0

−2 1 0
0 0 1




 1 0 0
2 1 0
0 0 1


 =


 1 0 0
0 1 0
0 0 1


 = I3.

So B = E−1
1 .

Summarizing what we can say about inverses of elementary matrices,
we have the following

Theorem 2 Let E be an elementary matrix. Then E is invertible, and the
inverse is given by

E−1 =




Eij; E = Eij

Ei(1c ); E = Ei(c)
Eij(−c); E = Eij(c)

The elementary matrices are not the only matrices that have inverses.

For example, let A =

[
2 3
1 2

]
. Then it easy to verify (do so!) that

A−1 =

[
2 −3
−1 2

]
. Do all matrices have inverses? As it turns out, the
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answer is no. For example, let A =

[
2 4
1 2

]
. We will soon show that A

has no inverse.
The reason for this is suggested by the following example. Suppose

A =

[
a b
c d

]
. Then if ad − bc �= 0, let B =

1
ad − bc

[
d −b
−c a

]
.

Computing the product AB, we have

AB =
1

ad − bc

[
a b
c d

] [
d −b
−c a

]
=

1
ad − bc

[
ad − bc 0
0 ad − bc

]
= I.

It is easily verified that BA = I, so we have B = A−1.
This is a good moment for a word of warning: inverses of matrices are

theoretically valuable, but the explicit computation of inverses is rarely of
much practical use. The computation of inverses is both expensive and
difficult to accomplish accurately. What do we mean by “theoretically
valuable?” Inverses allow us to state concisely certain results that would
be quite difficult to state in other terms. Indeed, they allow us to derive
results that might be difficult to state otherwise. For example, suppose
that we want the solution to Ax = b. If A is invertible, this is easy! The
solution is x = A−1b. In view of the warning just given, though, the
derivation might be of little practical use. In practice, this approach to
solving matrix equations is not used. We summarize in the following
theorems two important properties of inverse matrices.

Theorem 3 Let A be an n × n matrix. If A−1 exists, then A−1 is unique.

Proof: Suppose A is n × n, with inverses B and C. Then

B = BI

= B(AC)
= (BA)C
= IC

= C

✷

Theorem 4 Let A, B be n × n matrices. If A−1 and B−1 exist, then
(AB)−1 exists, and is given by

(AB)−1 = B−1A−1.
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Proof: By the uniqueness of inverses, it suffices to show that

(AB)(B−1A−1) = A(B−1B)A−1

= AIA−1

= AA−1

= I

✷

It follows inductively that

(A1A2 · · ·Ak)−1 = A−1
k A−1

k−1 · · ·A−1
1 .

We postpone to a later section (§3.2) a practical technique for computing
inverses of small matrices by hand.
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2.7 Exercises for Chapter 2

1. Let x =

[
1
2

]
, y =

[
−2
1

]
, and z =

[
2

−2

]
. Compute the

following:

(a) x+ y, y + z, and x+ z.

(b) x− y and y − x.

(c) 2x− 3y + z.

(d) x · y, x · z, and y · z

2. Repeat (1), this time using x =


 1

2
−1


, y =


 −2

1
0


, and

z =


 2

−2
3


.

3. For each pair of vectors from (1), compute the angle θ between those
vectors.

4. Repeat (3), using the vectors from (2).

5. Let A =

[
1 2
0 1

]
, B =

[
1 −2
0 1

]
, and C =

[
3 2

−2 1

]
. Perform

the following:

(a) Compute the sum, difference, and product of each pair of
matrices.

(b) Compute 2A − 3B + 4C.

(c) Find the transpose of each matrix.

(d) For each pair, verify that the transpose of the product is equal
to the product of the transposes, but taken in reverse order.
(e.g., that (AB)T = BT AT )

6. Let A =


 1 2 4
0 1 −1
1 1 1


, and B =


 1 −2 −2
0 1 −1
3 2 1


. Repeat the

operations from the preceding exercise for A and B.
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7. Let A =

[
1 2 4
0 1 −1

]
, and B =


 1 −2
0 1
3 2


. Find each of the

following, or explain why the indicated operation is not defined.

(a) A+B

(b) A+BT

(c) AB

(d) AT B

8. Let A and B be as in problem #6. Are the columns of A linearly
independent? The columns of B?

9. Let A and B be as in problem #7. Are the columns of A linearly
independent? The columns of B? What can you say about the linear
(in-)dependence of the rows of these matrices?

10. For each pair A, B, verify that B = A−1.

(a) A =

[
1 2
3 7

]
, B =

[
7 −2

−3 1

]
.

(b) A =


 1 2 3
0 1 2
0 0 1


, B =


 1 −2 1
0 1 −2
0 0 1


.

11. (a) Find the rank of each matrix from problems 6 and 7.

(b) Find the rank of A, where

A =




3 2 −4 1 5
6 4 −7 3 1

−3 −2 6 1 2
9 6 −11 4 6


 .

What can you say about the linear independence of the columns
in A? The rows?
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Chapter 3

Systems of Linear Equations,
Revisited

Here we take a second look at systems of linear equations and methods for
their solution. We begin by bringing elementary matrices back into the
picture. This enables us to invent a useful way of factoring a matrix that
will facilitate the solution of systems of the form Ax = bi, where {bi} is a
sequence of vectors.

3.1 Gaussian Elimination as Matrix Factorization

Recall the example of §2.6, which is repeated here. We had

A =


 1 2 4 1
2 −2 3 3
1 0 2 1


 , E1 =


 1 0 0

−2 1 0
0 0 1


 , E2 =


 1 0 0

0 1 0
−1 0 1


 ,

E3 =


 1 0 0
0 1 −3
0 0 1


 , and E4 =


 1 0 0
0 0 1
0 1 0


 .

Then E1A =


 1 2 4 1
0 −6 −5 1
1 0 2 1


 , E2(E1A) =


 1 2 4 1
0 −6 −5 1
0 −2 −2 0


 ,

E3(E2E1A) =


 1 2 4 1
0 0 1 1
0 −2 −2 0


 , and E4(E3E2E1A) =


 1 2 4 1
0 −2 −2 0
0 0 1 1


 .
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By the associativity of matrix multiplication, we have

(E4E3E2E1)A =


 1 0 0

−1 0 1
1 1 −3




 1 2 4 1
2 −2 3 3
1 0 2 1


 =


 1 2 4 1
0 −2 −2 0
0 0 1 1


 .

Note that we have the row-echelon matrix on the right-hand side as the
product of two matrices. What good can this possibly do us? The key lies
in the fact that we have multiplied the original matrix A from the left by a
product of elementary matrices; we know that each of these is invertible
and that each inverse is easily computed. Writing A = E−1

1 E−1
2 E−1

3 E−1
4 B,

we have a factored form for A.

3.2 Computing Inverses

In Chapter 2, we encountered a formula for computing the inverse of a
2× 2 matrix. Unfortunately, formulas are impractical for obtaining
inverses of larger matrices. We can apply the notion of matrix
factorization to obtain a conceptual view of the computation of inverses.
From the section of block-structured matrices, we know that for matrices
A, B, and C of the appropriate dimensions, we have

B
[

A C
]
=
[

BA BC
]
.

In particular, if A is an invertible matrix, then

A−1
[

A I
]
=
[

I A−1
]
.

Suppose we can transform
[

A I
]
to
[

I B
]
by a sequence of row

operations. We can encode this as premultiplication by a sequence of
elementary matrices:

EkEk−1 · · ·E1

[
A I

]
=
[

I B
]

.

Since EkEk−1 · · ·E1A = I, it follows that EkEk−1 · · ·E1 = A−1, but
then

B = EkEk−1 · · ·E1I = A−1I = A−1.

Thus we can compute A−1, if it exists, by Gaussian elimination. If A is
not invertible, we’ll see later that it is impossible to transform A to I by
elementary row operations, so if we simply set up the augmented matrix[

A I
]
and apply Gaussian elimination to transform A to I, either
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1. we get stuck, signaling that A−1 does not exist, or

2. the end result is
[

I A−1
]
.

example: First we try this on a singular matrix, anticipating that we’ll
get stuck. Let

A =

[
1 2
2 4

]
.

Setting up the system, [
1 2 1 0
2 4 0 1

]
,

after one elimination step we have[
1 2 1 0
0 0 −1 1

]
,

and we’re done; any attempt to introduce a nonzero in the 2, 2-position
will overwrite with a nonzero the new zero in the 2, 1-position.
example: Now for an example in which the inverse exists and the process
described above succeeds in transforming A to the identity. Let

A =


 2 1 0
0 1 −1
4 −1 4


 .

We begin by setting up the system,
 2 1 0 1 0 0
0 1 −1 0 1 0
4 −1 4 0 0 1


 .

Subtracting twice row 1 from row 3, we have
 2 1 0 1 0 0
0 1 −1 0 1 0
0 −3 4 −2 0 1


 .

Adding three times row 2 to row 3, we have
 2 1 0 1 0 0
0 1 −1 0 1 0
0 0 1 −2 3 1


 .
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Adding row 3 to row 2, we have
 2 1 0 1 0 0
0 1 0 −2 4 1
0 0 1 −2 3 1


 .

Subtracting row 2 from row 1, we have
 2 0 0 3 −4 −1
0 1 0 −2 4 1
0 0 1 −2 3 1


 .

We finally divide row 1 by 2, obtaining
 1 0 0 3/2 −2 −1/2
0 1 0 −2 4 1
0 0 1 −2 3 1


 .

Expressing the preceding steps in terms of elementary matrices, we have
used a sequence of matrices E1, E2, E3, E4, and E5, where

E1 =


 1 0 0

0 1 0
−2 0 1


 , E2 =


 1 0 0
0 1 0
0 3 1


 , E3 =


 1 0 0
0 1 1
0 0 1


 , E4 =


 1 −1 0
0 1 0
0 0 1


 ,

and E5 =


 1/2 0 0

0 1 0
0 0 1


 .

From the discussion preceding this example, we expect to find

A−1 = E5E4E3E2E1 =


 3/2 −2 −1/2

−2 4 1
−2 3 1


 .

This is easily verified by multiplication.
It should be pointed out once again that computation of inverses is in

general both expensive and unreliable. Computation of inverses of small
(e.g., 2× 2 or 3× 3) matrices to solve well-behaved toy problems for
academic purposes is routine, and the methods discussed here suffice. In
practice, we find alternatives.
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3.3 The LU Decomposition

Now suppose that we are faced with the need to solve Ax = b repeatedly ,
for a fixed n × n matrix A but for multiple right-hand sides b. We can
exploit the factorization discovered in the preceding section. Let’s assume
first that A can be reduced to row-echelon form without row interchanges.
The reason for the assumption is that the development is simpler.

So we have elementary matrices E1, E2, . . . , Ek, each representing the
addition of a multiple of some row i to some row j, where i > j, and such
that EkEk−1 · · ·E1A = U , a row-equivalent matrix in row-echelon form.
Since E−1

i exists for each 1 ≤ i ≤ k, it follows that A = E−1
1 E−1

2 · · ·E−1
k U .

By the action of each matrix, we can see that each of these matrices is
lower triangular, and it follows that E−1

i is also lower triangular. In fact,
the matrices Ei and E−1

i are unit lower triangular , which means that their
main diagonal entries are all 1’s. We already know that the product of unit
lower triangular matrices is unit lower triangular, so we know that
E−1

1 E−1
2 · · ·E−1

k is unit lower triangular. Letting L denote this product, we
have A = LU , the product of a unit lower triangular matrix with an upper
triangular matrix. This factorization of A is known as the
LU -decomposition of A.

So now solving Ax = b is equivalent to solving LUx = b. Why is this
important news? We can solve LUx = b by solving a sequence of
triangular systems. We first solve Ly = b, using forward substitution,
sometimes called forward elimination. Solving this system corresponds to
preprocessing b using the same elementary row operations that were used
to reduce A to row-echelon form. We now solve Ux = y by
back-substitution to recover the solution vector x.

We have already seen that U is the row-echelon form of A produced by
Gaussian elimination, but how do we compute L in practice? We know
that L is unit lower triangular, so the diagonal and superdiagonal entries
are known. We work left-to-right, recording information generated during
elimination, starting in column 1. For each i = 2, . . . , n, let mi1 =

ai1

a11
. By

subtracting mi1 times row 1 from row i, 2 ≤ i ≤ n, we annihilate the
i, 1-entry. Denote by A(2) = (a(2)

ij ) the matrix obtained by annihilating all
entries of column 1 below the pivot. (Remember, by our assumption there

are no row interchanges.) Now for each i = 3, . . . n, let mi2 =
a

(2)
i2

a
(2)
22

, and

subtract mi2 times row 2 from row i, 3 ≤ i ≤ n. This annihilates all entries
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of column 2 below the pivot. Continuing in this fashion, we end up with

U =




a11 a12 · · · · · · a1n

0 a
(2)
22 · · · · · · a

(2)
2n

...
...

...
...

...
0 · · · · · · 0 a

(n)
nn


 .

Now for the best part. It can be shown, and a bit of experimentation will
confirm, that

L =




1 0 0 · · · · · · 0
m21 1 0 · · · · · · 0
m31 m32 1 0 · · · 0
...

...
...

...
. . . 0

mn1 mn2 · · · · · · mn,n−1 1


 .

So computing the LU -decomposition is no more complicated than
performing Gaussian elimination on A. We simply record the multipliers
as we go.
example: Suppose we want to solve Ax = b, where

A =


 2 3 −1
2 4 3
6 1 7


 , and b =


 3

−6
−3


 .

We begin by finding the LU -decomposition of A. Initially,

L =


 1 0 0
? 1 0
? ? 1


 ,

i.e., we don’t specify the entries not yet known. The multipliers for column
1 are m21 = 1 and m31 = 6/2 = 3, respectively. So we have

A(2) =


 2 3 −1
0 1 4
0 −8 10


, and the current state of L is L =


 1 0 0
1 1 0
3 ? 1


.

From A(2), we compute m32 = −8. The final form of L is

L =


 1 0 0
1 1 0
3 −8 1


, and the final form of U is given by U =


 2 3 −1
0 1 4
0 0 42


.
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We now solve Ly = b, obtaining y =


 3

−9
−84


, and then solve Ux = y,

obtaining x =


 2

−1
−2


. It is easy to verify both the decomposition and the

computed solution; these are left as exercises.
In summary, we have a way of decomposing an n × n matrix A into a

product A = LU , where L is n × n unit lower triangular and U is an upper
triangular matrix that is row-equivalent to A. The value of this is that we
can now solve a sequence of k equations of the form Axi = bi, (1 ≤ i ≤ k)
by performing Gaussian elimination once at the beginning, and by then
performing forward- and back-substitution once for each vector bi. The
benefit is that, once the factorization of A as A = LU is complete, we can
solve Axi = bi for subsequent right-hand sides bi by solving a pair of
triangular systems rather than by repeating the elimination. The principal
limitation of the technique as described here is that the elimination must
not involve row interchanges.

3.4 The Decomposition PA=LU

We now consider the case in which a triangular factorization is desired but
the matrix A in question cannot be reduced to row-echelon form without
row interchanges. (In hand computation, this occurs when a zero pivot is
encountered.) The procedure is simple, in principle. First imagine the
effect of performing a row interchange on the augmented matrix [A|b]. If
rows i and j are swapped, the interchange also affects entries i and j in b.
We can view the process as left-multiplication of [A|b] by the elementary
matrix Eij , the result being the augmented matrix Eij [A|b] = [EijA|Eijb].
It follows that Ax = b if and only if EijAx = Eijb. Our problem here is
that we want to factor A but wish to postpone consideration of right-hand
sides until later. But if we are able to factor EijA as EijA = LU , and are
then presented with a vector b, then by computing Eijb we have subjected
b to the same interchange already applied to A and are therefore ready to
solve LUx = Eijb. In the most general case, we can interchange a number
of row pairs by left-multiplying A by a permutation matrix P , which is
constructed by applying the necessary interchanges to a single copy of the
identity matrix. Alternatively, P can be viewed as a product of elementary
matrices, one for each necessary row interchange. As in the case of a single

41



elementary matrix, Ax = b if and only if PAx = Pb. So if we have in
hand the factorization PA = LU , we solve PAx = Pb by first solving
Ly = Pb, and then solving Ux = y as before.

example: Let A =



1 3 2 1
1 3 2 2
1 4 2 2
2 7 5 6


. We want an LU -decomposition of A.

But after subtracting row one from rows two and three, and twice row one

from row four, we have A(1) =



1 3 2 1
0 0 0 1
0 1 0 1
0 1 1 4


. We cannot continue, so we

swap rows two and three, obtaining A(2) =



1 3 2 1
0 1 0 1
0 0 0 1
0 1 1 4


. We now

subtract row two from row four, obtaining A(3) =



1 3 2 1
0 1 0 1
0 0 0 1
0 0 1 3


. But

this is not an upper triangular matrix, so we swap rows three and four,

obtaining U =



1 3 2 1
0 1 0 1
0 0 1 3
0 0 0 1


. Had we subjected A to these two row

swaps in advance, we could have performed elimination without
interchanges. Subjecting the identity matrix I to the interchanges in

question, we obtain the permutation matrix P =



1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0


. It is

easy to verify that PA =



1 3 2 1
1 4 2 2
2 7 5 6
1 3 2 2


 can be reduced to upper

triangular form without row interchanges, the result being the factorization

PA = LU =



1 0 0 0
1 1 0 0
2 1 1 0
1 0 0 1





1 3 2 1
0 1 0 1
0 0 1 3
0 0 0 1


 .
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Now suppose that we want to solve Ax = b for b = (0, 2, 3, 7)T . Since
we already have PA = LU , we compute Pb = (0, 3, 7, 2)T , and solve
LUx = Pb, obtaining the solution vector x = (−1, 1,−2, 2)T . (Verification
is left as an exercise.)

It should be mentioned that, when solving such a system on a
computer, the rows would never be physically swapped; instead, row swaps
are recorded in a vector p, which in the previous case is initialized as
p = (1, 2, 3, 4)T . In the previous example, the final state of p would have
been p = (1, 3, 4, 2)T . The code would refer, at each step, to the pi, j-entry
in A rather than the i, j-entry. This is more efficient from the standpoint
of minimizing operations.

3.5 The Determinant

It is useful to associate with a square matrix A = (aij) a single number,
det(A), called the determinant of A, that tells us (among other things)
whether A is singular. The definition of the determinant can take a variety
of forms; here we take a recursive approach that has theoretical value and
is practical for small matrices. For a matrix of dimensions 1× 1, i.e.,
A = [a], we define the determinant of A by det(A) = a. To define the
determinant of an n × n matrix for n > 1, we must first develop some
machinery. If A is n × n, the submatrix constructed from A by deleting
row i and column j has dimensions (n − 1)× (n − 1). The determinant of
this smaller matrix is called the i, j−minor of aij, denoted by Mij . The
signed minor Aij = (−1)i+jMij is called the cofactor of aij. We now define
the determinant of A in terms of cofactors:

det(A) =
n∑

j=1

a1jA1j ,

that is, det(A) is the sum of the products of the entries in the first row of
A with their corresponding cofactors.

For example, the determinant of a 2× 2 matrix A =

[
a b
c d

]
is the

number det(A) = adet ([d])− bdet ([c]) = ad − bc. One can derive a
formula for the determinant of a 3× 3 matrix using the same approach,
but in general it is best to dispense with formulas and simply use the
cofactor expansion. In general, computation of the determinant is best
avoided altogether; the number of arithmetic operations alone make the
process expensive, and it is typically unnecessary. Nevertheless, in
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academic settings it is useful to become adept at computing determinants
of small matrices.

For the 3× 3 matrix A =


 a11 a12 a13

a21 a22 a23

a31 a32 a33


, the cofactor expansion

gives

det(A) = a11 det

[
a22 a23

a32 a33

]
−a12 det

[
a21 a23

a31 a33

]
+a13 det

[
a21 a22

a31 a32

]
,

which involves evaluating three smaller determinants.
example: Given

A =


 1 2 −1
2 0 2
3 −1 1


 ,

we find det(A) = 1(2) − 2(−4) + (−1)(−2) = 12.
While the definition above calls for expansion along the first row of A,

it turns out that we can expand along any row or, in fact, along any
column. By choosing, when possible, a row or column that has as many 0’s
as possible, this simplifies the work. The following theorem expresses this
compactly; for a proof see any standard text on linear algebra.

Theorem 5 For any choice of q or p,

det(A) =
n∑

j=1

apjApj =
n∑

i=1

aiqAiq.

The following theorem describes useful properties of the determinant,
including the effect on the determinant of elementary row operations.

Theorem 6 Let A be an n × n matrix. Then

1. det
(
AT
)
= det(A).

2. If A has a row (or column) of zeros, then det(A) = 0.

3. If any row (or column) of A is multiplied by a scalar c, then the
determinant is also multiplied by c, i.e.,

det [a1 · · · caj · · · an] = cdet [a1 · · · aj · · · an] .
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4. If any row of A is a multiple of another row, then det(A) = 0. The
statement remains true if we replace “row” with “column”.

5. If a multiple of row i is added to row j �= i, the determinant is
unaffected. A similar result holds for columns.

6. If two rows (columns) are interchanged, the determinant is multiplied
by −1, i.e., det (EijA) = − det(A).

7. If A is triangular, then det(A) = Πn
i=1aii, i.e., the determinant of a

triangular matrix is the product of its diagonal entries.

From the preceding theorem, we see that the elementary
row-interchange matrix has determinant −1, the elementary matrix
obtained from I by multiplying row i by c has determinant c, and the
elementary matrix in which c times row i is added to row j has
determinant 1. Since row operations are equivalent to premultiplication by
elementary matrices, it follows that if E is an n × n elementary matrix and
A any n × n matrix, then det(EA) = det(E) det(A). This leads to several
useful results, of which three are presented here.

Theorem 7 An n × n matrix A is singular if and only if det(A) = 0.

Theorem 8 If A and B are n × n matrices, then

det(AB) = det(A) det(B).

Corollary 9 If A is an n × n nonsingular matrix, then
det

(
A−1

)
= (detA)−1.

Proof: Suppose A is an n × n matrix and that detA = k �= 0. Then

1 = det(I) = det
(
AA−1

)
= det(A) det

(
A−1

)
= k det

(
A−1

)
.

Since k �= 0 we have det (A−1
)
= 1/k = (detA)−1. ✷

Note that if A = LU , then since L is unit lower triangular it follows
that det(L) = 1. By the multiplicative property of the determinant,

det(A) = det(LU) = det(L) det(U) = det(U),

so we see that A is singular if and only if U contains at least one diagonal
zero.
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We close the section on determinants with a tool of some utility called
Cramer’s rule. Suppose A is n × n and that we want to solve Ax = b. In
practice, we’ll use Gaussian elimination or the LU -decomposition, but
there is another way. Let A(i) denote the matrix obtained from A by
replacing column i of A with b. Then xi, the ith component of the solution
vector x, is given by

xi =
det

(
A(i)

)
det(A)

.

example: Suppose we want to solve Ax = b, with

A =


 1 2 0
2 1 3
2 −2 0


 , and b =


 06
6


 .

We use the cofactor expansion along column 3 to find

det(A) = −3 det
[
1 2
2 −2

]
= 18.

We now compute

x1 =
1
18

∣∣∣∣∣∣∣
0 2 0
6 1 3
6 −2 0

∣∣∣∣∣∣∣ =
−2
18
(−18) = 2,

x2 =
1
18

∣∣∣∣∣∣∣
1 0 0
2 6 3
2 6 0

∣∣∣∣∣∣∣ =
1
18
(−18) = −1,

and

x3 =
1
18

∣∣∣∣∣∣∣
1 2 0
2 1 6
2 −2 6

∣∣∣∣∣∣∣ =
1
18
(18) = 1,

and so the computed solution is x =


 2

−1
1


.

Cramer’s Rule is more applicable in theory than in practice, since it is
impractical to implement the rule for systems of more than modest size.
For small systems larger than, say, 3× 3, it is less expensive from the point
of view of computation to use Gaussian elimination.
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3.6 The Cross Product

Many problems arise in R3 in which it is useful to obtain a vector z that is
perpendicular to two given vectors u and v. In this setting, it turns out
that we can define a vector product of u and v that does the job.
Discussion of this product was postponed to this section for two reasons.
The first is that this product is unavailable in Rk for k �= 3, and so does
not play an important role in linear algebra. The second is that it is
convenient to be able to bring determinants into the discussion.

Definition: Let u = (u1, u2, u3)T and v = (v1, v2, v3)T be vectors in R3.
The cross product of u and v is

u× v = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1)T .

A handy mnemonic device with which one can easily recall the formula
for the cross product involves an abuse of the determinant notation. Let
e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , and e3 = (0, 0, 1)T . Then we may write

u× v =

∣∣∣∣∣∣∣
e1 e2 e3

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣ .
By expanding as if we were taking a determinant, we produce the desired
formula. (It is not really a determinant, of course, since the entries in the
top row are not real numbers, while the elements in rows two and three are
reals.)

Verification that x× y is perpendicular to both x and y is a simple
exercise in computing the angle between vectors.

example: Let u = (1,−2,−1)T and v = (2, 3, 1)T . Then

u×v = ((−2)(1)−3(−1))e1+(2(−1)−1(1))e2+(1(3)−2(−2))e3 = (1,−3, 7)T .

We can verify the result by taking dot products:
u · (u × v) = 1 + 6− 7 = 0, and v · (u× v) = 2− 9 + 7 = 0.

A number of useful identities involving the cross product are easily
derived. We have already observed that

u · (u × v) = v · (u × v) = 0.

It is easy to show, for any vector u, that

u × 0 = 0× u = 0,
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and that
u× u = 0.

A glance at the mnemonic that packages the cross product as a 3× 3
determinant suggests that, for any vectors u and v,

u× v = −(v × u).

This is easily verified. We can also exploit properties of determinants to
show that if m is any scalar, then

mu× v = u× mv = m(u× v).

Somewhat surprisingly, we have a pair of distributive laws for the cross
product over addition:

u× (v +w) = u × v + u× w, and
(u+ v) × w = u ×w + v × w.

A straightforward (but tedious) bit of algebra reveals an identity due to
Lagrange, which states that

||u × v||2 = ||u||2||v||2 − (u · v)2.

Just as the dot product has a geometric interpretation in terms of the
angle between vectors, we can provide a geometric interpretation of the
cross product. We know that u · v = ||u||||v|| cos θ, where θ is the angle
between u and v. Squaring both sides, we have

(u · v)2 = ||u||2||v||2 cos2 θ

= ||u||2||v||2(1− sin2 θ)
= ||u||2||v||2 − ||u||2||v||2 sin2 θ

By rearranging Lagrange’s identity, we have

(u · v)2 = ||u||2||v||2 − ||u × v||2.

Comparing terms, we have

||u × v||2 = ||u||2||v||2 sin2 θ;

taking square roots, we finally have
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✲✡
✡
✡
✡

✡
✡

✡
✡✡✣

θ ✡
✡

✡
✡
✡

✡
✡
✡✡✣
✲

︸ ︷︷ ︸
||u||



||v|| sin θ

v

u

A

Figure 3.1: The area of the parallelogram determined by u and v is
A = ||u||||v|| sin θ = ||u × v||.

||u × v|| = ||u||||v|| sin θ.

But the right-hand side of this equation can be interpreted as the area
of a parallelogram determined by u and v. See Figure 3.1 for an
illustration. The parallelogram lies in the plane containing u and v; for
convenience, we may place u in standard position colinear with the
horizontal axis and let θ represent the positive angle between u and v.
The parallelogram in question has as its vertices the origin and the
terminal points of u, v, and u+ v. The width of the parallelogram is ||u||,
the height is ||v|| sin θ, and the result follows.
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3.7 Exercises for Chapter 3

1. Let A =

[
2 1
5 3

]
, and B =

[
4 3
7 6

]
.

Find A−1 and B−1, if they exist.

2. Let A =


 1 0 0
1 3 4
2 3 6


, and B =


 2 0 4
1 2 1
2 0 5


.

Find A−1 and B−1, if they exist.

3. Verify that the LU factorization on pages 39–40, and the solution to
the system in question, are correct.

4. Let A =

[
4 3
7 6

]
, and b = (0,−3)T . Find the LU factorization of A,

and use this factorization to solve Ax = b.

5. Let A =


 1 1 0
3 1 4
2 3 5


, and b = (1, 3, 9)T . Find the LU factorization

of A, and use this factorization to solve Ax = b.

6. Let A =


 2 0 0
1 2 4
3 3 6


 , B =


 1 1 0
3 1 4
2 3 5


, and C =


 1 2 3

4 5 −6
−7 8 9


.

Find det(A), det(B), and det(C), using a cofactor expansion.

7. Let A =

[
2 4

−1 2

]
, and let b = (2,−5)T . Solve Ax = b using

Cramer’s rule.

8. Let A =


 1 1 0
3 1 4
2 3 5


 , and let b = (−1, 13, 11)T . Solve Ax = b using

Cramer’s rule.

9. Verify that, for any x and y in R3, the cross product x × y is
perpendicular to both x and y.

10. Let u = (2,−1, 1)T and v = (−1, 2, 1)T . Find the following:
(a) u× v
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(b) v × u

(c) The area of the parallelogram determined by u and v.

11. Let e1, e2, and e3 be as defined in the text. Verify the following:

(a) e1 × e2 = e3

(b) e2 × e3 = e1

(c) e3 × e1 = e2

(d) e1 × e3 = −e2

(e) e3 × e2 = −e1

(f) e2 × e1 = −e3

51



Chapter 4

Introduction to Eigenvalues
and Eigenvectors

It has been repeatedly emphasized that the determinant, like the inverse of
a nonsingular matrix and like the Cramer’s rule approach to solving
Ax = b, is largely a theoretical tool and that one should not, in general,
consider actually computing the determinant. Exceptions to this rule arise,
typically in academic settings and in connection with small systems of
equations. In this section, we see a situation in which the determinant
plays an important theoretical role and in which computation of the
determinant is useful for solving toy problems. We begin with such a
problem.

Consider the following simple population model. Suppose that the
population of California at time t0 is 30 million, and that the population of
the U.S. at time t0 is 270 million. Furthermore, suppose that during any
given year 10% of the population of California leaves and that 1% of the
outside population moves in. Finally, suppose that the U.S. population is
stable. We can let xk and yk denote the populations (in millions) of
California and of the U.S. outside of California, respectively, at the end of
year k. For k ≥ 1 we now have a system of equations{

xk = .9xk−1 + .01yk−1

yk = .1xk−1 + .99yk−1
,

and a sequence of vectors x0,x1, . . ., where xk =

[
xk

yk

]
. Thus

x0 =

[
30
240

]
. Finally, observe that we can compactly write the
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relationship between xk and xk−1 as Axk−1 = xk, where A

[
.9 .01
.1 .99

]
. It

is a simple exercise to compute xk for the first few values of k; we find

x1 =

[
29.4
240.6

]
, x2 �

[
28.87
241.13

]
, and x3 �

[
28.39
241.61

]
. One might ask

whether there is a steady-state population, i.e., a population distribution

x =

[
x
y

]
that satisfies Ax = x. First consider what this implies. Since

Ax = x, it follows that (A − I)x = 0. Now this equation always has the
trivial solution x = 0, but we are looking for a vector whose entries sum to
270 and is therefore nonzero. If such a vector exists, then A − I must be

singular. Let’s check: A − I =

[
−.1 .01

.1 −.01

]
. By inspection, the second

row is a multiple of the first; Gaussian elimination results in the matrix

Â =

[
−.1 .01
0 0

]
. Solving the equation represented by the nonzero row,

we find x =

[
s
10s

]
where s is an arbitrary parameter. So our population

vector is of this form and has entries whose total is 270, from which we
have a new linear equation to solve: 11s = 270. This one is easy to solve,
though, and we find s = 270/11 � 24.5455. Thus a close approximation to
our steady-state population is (in millions, again) x = 24.5455, y = 245.455.

4.1 Eigenvalues and Eigenvectors

Notice that this process began with our search for a particular vector x
that was unchanged by left-multiplication by A. More generally, we might
look for a scalar λ and a vector x with the property that Ax = λx for a
given n × n matrix A. Such a scalar is called an eigenvalue of A, and a
vector x with the property that Ax = λx is called an eigenvector . (To be
precise, we typically call x an eigenvector associated with λ.) Rearranging,
and using the fact that x = Ix, we have

(A − λI)x = 0. (4.1)

This equation always has the trivial solution, but, since we are looking for
a nontrivial solution, we require that (A − λI) be singular. It is then a
simple matter to find an eigenvector; we simply solve the homogeneous
equation (A − λI)x = 0. Since A − λI is singular, Gaussian elimination
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reveals at least one free variable which enables us to construct a nontrivial
solution x. Actually, the existence of a nontrivial solution implies the
existence of an infinite family of nontrivial solutions; this set of vectors
satisfying Ax = λx is called the eigenspace associated with λ. All this is
fine, but how do we find λ? In our example at the beginning of the
chapter, we experimentally discovered that λ = 1 was an eigenvalue of the

matrix A =

[
.9 .01
.1 .99

]
, but in general we don’t yet know where to begin.

4.2 The Characteristic Equation

Until recently, all we knew about singularity was that it was equivalent to
the existence of nontrivial solutions to the homogeneous equation. We now
know, however, that a matrix A is singular if and only if detA = 0, and
equation 4.1 shows that this is the key to finding eigenvalues by hand.
Consider the equation,

det(A − λI) = 0.

This is the characteristic equation of the matrix A. If one uses the cofactor
expansion of the determinant to evaluate the left-hand side of the
equation, then it is a simple matter to show by induction that det(A − λI)
is a polynomial in λ. This polynomial is called the characteristic
polynomial of A; if A is n × n, the characteristic polynomial of A has
degree n. It follows that finding eigenvalues for A reduces to finding zeros
of the characteristic polynomial det(A − λI). (At least in principle, this is
something that we can do, although in practice it presents serious
difficulties.) From experience, we know that we might find repeated zeros.
For now, though, we assume that all zeros are distinct. The other case is
slightly more complicated, and is left for a subsequent course.

Consider the matrix A =

[
.9 .01
.1 .99

]
from the beginning of the

chapter. We know from the earlier discussion that λ1 = 1 is an eigenvalue

and that x1 =

[
1
10

]
is an eigenvector associated with λ1. Is there

another eigenvalue? We begin by considering

det(A − λI) = det

[
.9− λ .01

.1 .99− λ

]
= λ2 − 1.89λ + .89,

whose roots are λ1 = 1 and λ2 = .89. Aha! The second eigenvalue is
revealed. So there must be a vector x with the property that Ax = .89x.
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To find such a vector, we construct the matrix

A − .89I =

[
.01 .01
.1 .1

]
.

As in the previous case, this matrix is visibly singular (It had better be
singular, right? That’s how we derived this technique.) and the equation
(A − .89I)x = 0 has infinitely many solutions, which collectively constitute
the eigenspace of A associated with λ = .89. One element of this

eigenspace is the vector x2 =

[
1

−1

]
. We can scale this, multiplying by

the scalar of our choice, but the sum of the entries will always be zero.
From this we can conclude that this eigenvalue/eigenvector pair has no
significance in our population model, since populations are implicitly
nonnegative. Had this matrix arisen in some other context, this pair might
have had some significance.

Let’s try another 2× 2. Let A =

[
2 1
2 3

]
. The characteristic

polynomial is

det

[
2− λ 1
2 3− λ

]
= λ2 − 5λ+ 4,

with zeros λ1 = 1 and λ2 = 4. To find an eigenvector associated with λ1,
we construct the matrix

A − λ1I = A − I =

[
1 1
2 2

]

As expected, this is visibly singular; solving (A − I)x = 0 we find

x = s

[
1

−1

]
and can take for a representative eigenvector the vector

x1 =

[
1

−1

]
. It is easy to verify that Ax1 = x1. Now we look for an

eigenvector associated with λ2 = 4. We begin by constructing the matrix

A − 4I =
[
−2 1
2 −1

]

This time solving (A − 4I)x = 0, we find x = s

[
1
2

]
, and can take for our
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representative eigenvector x2 =

[
1
2

]
. As before, we check, finding that

Ax2 =

[
2 1
2 3

] [
1
2

]
=

[
4
8

]
= 4x2,

as expected.

We now look at a 3× 3 example. Let A =


 2 1 0
0 −3 1
0 0 1


. The

characteristic equation, in factored form, is (λ − 2)(λ + 3)(λ − 1) = 0, with
roots λ1 = 2, λ2 = −3, and λ3 = 1.

Solving (A − λ1)x =


 0 1 0
0 −5 1
0 0 −1


x = 0, we have x3 = x2 = 0 and

x1 = s, where s is an arbitrary scalar. So we might choose x1 = (1, 0, 0)T .

Solving (A − λ2)x =


 5 1 0
0 0 1
0 0 4


x = 0, we have x3 = 0, x2 = s, and

x1 = −s/5, where s is an arbitrary scalar. So we might choose
x2 = (−1, 5, 0)T .

Finally solving (A − λ3)x =


 1 1 0
0 −4 1
0 0 0


x = 0, we have x3 = s,

x2 = s/4, and x1 = −s/4, where once again s is an arbitrary scalar. So we
might choose x3 = (−1, 1, 4)T .

To summarize the procedure for finding the eigenvalues and
eigenvectors of an n × n matrix A:

1. Construct the characteristic polynomial det(A − λI).

2. Solve the characteristic equation det(A − λI) = 0. The roots
λ1, λ2, . . . , λn are the eigenvalues of A.

3. For each eigenvalue λi, solve the homogeneous equation
(A − λiI)x = 0; since (A − λiI) is singular, there will be infinitely
many solutions, each of which is an eigenvector associated with λi.
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4.3 Exercises for Chapter 4

1. In each of the following, verify that the given vectors are eigenvectors
for the given matrix. What are the associated eigenvalues?

(a) A =

[
−1 8
1 1

]
, x1 =

[
2
1

]
, x2 =

[
−4
1

]
.

(b) A =


 1 30 0
1 0 0
0 1 0


 , x1 =


 0

0
−3


 , x2 =


 25

−5
1


x3 =


 366

1


.

2. For each of the following 2× 2 matrices,
(a) Find the characteristic polynomial, in factored form.

(b) Find all eigenvalues.

(c) For each eigenvalue λ, find an associated eigenvector x, and
verify that Ax = λx.

(a) A =

[
−3 4
1 0

]

(b) B =

[
−3 12
1 1

]

(c) C =

[
2 −16

−1 −4

]

3. Repeat exercise (2), but with the following matrices:

(a) A =


 3 0 0
0 2 −6
0 −1 1




(b) B =


 4 5 −6
1 2 0
0 1 2




(c) C =


 3 1 0

19 1 1
−20 0 1
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Chapter 5

An Introduction to Complex
Arithmetic

The need to identify the eigenvalues of a square matrix is one of many
problems that call for us to locate the zeros of a polynomial. We know
that the quadratic formula can be used to find the real zeros of a quadratic
polynomial, if they exist. Consider the equation, x2 + 1 = 0. Applying the
quadratic formula, we find x = ±1

2

√−4 = ±√−1. Clearly there is no real
solution. What can we do?

Recall that a polynomial p(x) with real coefficients is called irreducible
over the reals if p(x) cannot be factored as a product p(x) = s(x)t(x),
where s(x) and t(x) are polynomials with real coefficients and with
positive degree smaller than that of p(x). Any linear polynomial is clearly
irreducible, since only constants have smaller degree. The polynomial
x2 + 1 from the preceding paragraph is an example of an irreducible
quadratic polynomial. It turns out that, while x2+1 is irreducible over the
reals, it is reducible over a larger field that contains the reals. To see how
this is done, we must develop some machinery.

5.1 Introduction, Fundamental Operations

The imaginary unit , denoted here by i, is given by i =
√−1. (Always

remember that i2 = −1, since this is a key to doing complex arithmetic.)
Since i =

√−1, it follows that if k > 0 then

√−k =
√
(−1)k = √−1

√
k = i

√
k.
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An imaginary number is any nonzero multiple of i. A complex number is
any number of the form z = a+ bi, where a and b are real numbers. We
call a the real part of z and b the imaginary part of z, denoted re(z) and
im(z), respectively. If im(z) = 0, then z is real; conversely, if re(z) = 0,
then z is imaginary. Complex numbers z and w are equal if and only if
re(z) = re(w) and im(z) = im(w), i.e., a+ bi = c+ di if and only if a = c
and b = d. Addition and subtraction of complex numbers are performed
componentwise, i.e., (a+ bi)± (c+ di) = (a ± c) + (b ± d)i. If z = (a+ bi)
and w = (c+ di), then their product is computed by treating them as
ordinary binomials, i.e.,
zw = (ac+ adi+ bci+ bdi2) = (ac − bd) + (ad+ bc)i.
example: Let z = 2 + 3i and w = 1− i. Then z + w = 3 + 2i,
z − w = 1 + 4i, and zw = 2− 2i+ 3i − 3i2 = 5 + i.

5.2 The Complex Plane

We can associate with each complex number a unique point in the
Cartesian plane, by treating one axis (usually the horizontal axis) as the
real axis and the other axis as the imaginary axis. We refer to the plane,
labeled in this fashion, as the complex plane. The number a+ bi is then
associated with the point (a, b). We now have visual reinforcement of the
fact that the real numbers are just a special case of the complex numbers,
i.e., R = {a+ bi|b = 0}. A similar comment applies to the imaginary
numbers. This also gives us a nice geometric interpretation for addition of
complex numbers: if z = a+ bi and w = c+ di, then the four points 0, z, w,
and z +w become the vertices of a parallelogram.
example: Let z = 2+ 3i, and w = 1+ 2i. Then z +w = 3+ 5i, and points
(0, 0), (2, 3), (1, 2), and (3, 5) describe a parallelogram in the complex plane.

If we first of all associate with the number z = a+ bi the directed line
segment with initial point at the origin and terminal point at (a, b), then it
is easy to see that the length of the segment can be calculated using the
ordinary Pythagorean distance function; in this context, we call this length
the modulus of z, denoted |z| and given by |z| = √

a2 + b2. The modulus is
also often called the magnitude. As a special case, we have the absolute
value of a real number x, given by |x| =

√
x2.

The representation of a complex number described above is typically
called the rectangular form, since we have described it in the context of
rectangular coordinates. There are two other useful representations. We
can first use the modulus to help develop the polar form of a complex

59



number. Suppose z = a+ bi, and let θ be the angle between the positive
real axis and the directed line segment with initial point at the origin and
terminal point at (a, b). Let r = |z|. Then it follows that the polar form for
z is z = r[cos θ + i sin θ]. The angle θ is called the argument of z, and is
easily computed by θ = arctan b

a
1. Note that, because of the periodicity of

the sine and cosine functions, if z = r(cos θ + i sin θ), then
z = r(cos(θ + 2kπ) + i sin(θ + 2kπ)) for any integer k. We can now make
geometric sense of multiplication. If z1 = r(cos θ + i sin θ) and
z2 = s(cos φ+ i sin φ), then

z1z2 = rs(cos θ + i sin θ)(cosφ+ i sinφ)
= rs(cos θ cosφ − sin θ sinφ) + i(cos θ sinφ+ sin θ cosφ);

It follows from fundamental trigonometric identities that

z1z2 = rs [cos(θ + φ) + i sin(θ + φ)] . (5.1)

So the modulus of the product is the product of the moduli, and the
argument of the product is the sum of the arguments.
example: Let z1 = 2 + 2i and z2 = 2i. Then z1 = 2

√
2(cos π

4 + i sin π
4 ) and

z2 = 2(cos π
2 + i sin π

2 ). So z1z2 ought to work out to be
z1z2 = 4

√
2(cos 3π

4 + i sin 3π
4 ). Checking via ordinary multiplication, we find

z1z2 = 4i+ 4i2 = −4 + 4i = 4
√
2(

−1√
2
+ i

1√
2
) = 4

√
2(cos

3π
4
+ i sin

3π
4
).

If z = a+ bi is a complex number, then the conjugate of z, denoted z,
is given by z = a − bi. So we have im(z) = −im(z). Geometrically, it
follows that we have reflected z across the real axis; if z = r(cos θ + i sin θ),
then z = r(cos θ − i sin θ) = r(cos(−θ) + i sin(−θ)).

From the ealier discussion, we have arg(z) = − arg(z). It should be
clear that |z| = |z|. Note, too, that for any complex number z = a+ bi, the
product zz = (a+ bi)(a − bi) = a2 − b2i2 = a2 + b2 is real. So now we have
a compact representation of the modulus: for any complex number z,
|z| = √

zz.
We can now consider complex division. If z = a+ bi, then

z−1 =
1
z
=

z

zz
=

a − bi

a2 + b2
.

1If θ does not lie in the interval [−π/2, π/2], the angle returned by the arctangent
function will be in error; many computer languages include a function called arctan2,
which takes as its arguments the sin and cosine of θ, thus ensuring that the angle returned
lies in the correct quadrant.
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For example, consider the quotient,
2 + i

1− 2i . By the preceding
paragraph, we have

2 + i

1− 2i =
(2 + i)(1 + 2i)
(1− 2i)(1 + 2i) =

2 + 4i+ i − 2
1 + 4

=
5i
5
= i.

Recall that this chapter began with an example in which we were faced
with the irreducible quadratic polynomial x2 + 1. We are now in a position
to factor x2 + 1 as the product of two linear polynomials with complex
coefficients: x2 + 1 = (x+ i)(x − i). This is no accident, as shown by the
following theorem.

Theorem 10 [The Fundamental Theorem of Algebra] Every polynomial
with complex coefficients factors completely as a product of linear
polynomials with complex coefficients.

As a corollary, we get that every polynomial with real coefficients
factors completely as a product of linear polynomials with complex
coefficients.
example: Let p(x) = x5 − x4 + 3x3 − 3x2 + 2x − 2. We see experimentally
that x = 1 is a zero; using long or synthetic division we can divide p(x) by
x − 1, obtaining the factorization p(x) = (x − 1)(x4 + 3x2 + 2). The factor
of degree four is itself factorable, and we obtain
p(x) = (x − 1)(x2 + 2)(x2 + 1). If we insist on real coefficients, we can go
no further, since the two quadratic factors are irreducible over the reals.
But if we allow complex coefficients, the theorem guarantees success.
Applying the results above, we finally have a complete factorization:

p(x) = (x − 1)(x − i
√
2)(x+ i

√
2)(x − i)(x+ i).

5.3 DeMoivre’s Theorem and Euler’s Identity

Note that if z = r(cos θ + i sin θ), then it follows from (5.1) that

z2 = r2(cos 2θ + i sin 2θ),
z3 = r3(cos 3θ + i sin 3θ),

and, by induction,
zn = rn(cos nθ + i sinnθ) (5.2)

This extremely useful result is known as DeMoivre’s Theorem, and
gives us one way to approach the matter of taking roots of complex
numbers.
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5.3.1 Powers and Roots

Powers of complex numbers are easily calculated, if we are in polar form,
by applying DeMoivre’s Theorem. They can be somewhat awkward
otherwise. Roots are a bit more work in any case, although their existence
is guaranteed by the Fundamental Theorem of Algebra. We first consider
roots of real numbers, then imaginary numbers, and finally complex
numbers in general.

Suppose we want to solve the equation, xn = c, i.e., we want the nth

root(s) of c. First suppose that c is real. We know that we get either no
real roots (if c < 0 and n is even) or one real root (if n is odd or c = 0), or
two real roots (if n is even and c > 0). There is no obvious pattern in these
results, but, by allowing complex roots, a remarkable pattern emerges.

Let’s start with c = 1. We know, from the preceding discussion, that

xn = 1 =




cos 0 + i sin 0
cos 2π + i sin 2π
cos 4π + i sin 4π
...
cos 2(n − 1)π + i sin 2(n − 1)π

.

By DeMoivre’s Theorem, we have

x = n
√

xn =




cos 0 + i sin 0
cos 2π

n + i sin 2π
n

cos 4π
n + i sin 4π

n
...
cos 2 (n−1)π

n + i sin 2 (n−1)π
n

.

So the nth roots of unity are evenly spaced about the unit circle in the
complex plane. If n is even, we get two real roots ±1; if n is odd, we get
one real root, namely 1 itself.

For example, suppose we want to find the sixth roots of unity. By the
preceding discussion, these are
1,−1, cos π

3 + i sin π
3 , cos 2π

3 + i sin 2π
3 , cos 4π

3 + i sin 4π
3 , and cos

5π
3 + i sin 5π

3 .
What if c �= 1? Still assuming that c is real, we move from the unit

circle to the circle with radius equal to the positive, real nth root of the
modulus (absolute value) of c and proceed in the same fashion. For
example, the fifth roots of 32 are
2, 2(cos 2π

5 + i sin 2π
5 ), 2(cos

4π
5 + i sin 4π

5 ), 2(cos
6π
5 + i sin 6π

5 ), and
2(cos 8π

5 + i sin 8π
5 ).
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If c is not real, then things generalize nicely. For example, suppose we
want to find the cube roots of 8i. We know that

8i =



8(cos π

2 + i sin π
2 )

8(cos(π
2 + 2π) + i sin(π

2 + 2π)) = 8(cos
5π
2 + i sin 5π

2 )
8(cos(π

2 + 4π) + i sin(π
2 + 4π)) = 8(cos

9π
2 + i sin 9π

2 )

Applying our new tools, we have

3
√
8i =



2(cos π

6 + i sin π
6 )

2(cos 5π
6 + i sin 5π

6 )
2(cos 9π

6 + i sin 9π
6 ) = 2(cos

3π
2 + i sin 3π

2 )
.

The most general case occurs when we want to find the nth roots of a
complex number z, where both re(z) and im(z) are nonzero. We can
exploit the polar form to find these roots quite easily, as formalized in the
following theorem:

Theorem 11 Every nonzero complex number z = r(cos θ + i sin θ) has n
distinct nth roots for any positive integer n. Each has modulus n

√
r, and

the arguments are the angles
θ + 2kπ

n
for k = 0, 1, . . . , n − 1.

example: Suppose we want to find the cube roots of z = 1 + i. In polar
form, z =

√
2(cos π

4 + i sin π
4 ). It follows from the preceding theorem that

we will find three cube roots of z; these are

6
√
2
(
cos

π

12
+ i sin

π

12

)
,

6
√
2
(
cos

3π
4
+ i sin

3π
4

)
, and 6

√
2
(
cos

17π
12

+ i sin
17π
12

)
.

We close with one more representation for a complex number. Students
familiar with calculus will recall that the MacLaurin series expansions for
the cosine and sine functions are, respectively,

cos x =
∞∑

k=0

(−1)k x2k

(2k)!
= 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·

and sinx =
∞∑

k=0

(−1)k x2k+1

(2k + 1)!
= x − x3

3!
+

x5

5!
− x7

7!
+ · · · ,

and that the Maclaurin expansion for the natural exponential function is
given by

ex =
∞∑

k=0

xk

k!
= 1 + x+

x2

2!
+

x3

3!
+ · · · .
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So consider the polar form of a complex number. We have

cos x+ i sinx =
∞∑

k=0

(−1)k x2k

(2k)!
+ i

∞∑
k=0

(−1)k x2k+1

(2k + 1)!

=
∞∑

k=0

(−1)k
(

x2k

(2k)!
+ i

x2k+1

(2k + 1)!

)

= 1 + ix − x2

2!
− ix3

3!
+

x4

4!
+

ix5

5!
− x6

6!
− ix7

7!
+ · · ·

= 1 + ix+
(ix)2

2!
+
(ix)3

3!
+
(ix)4

4!
+
(ix)5

5!
+
(ix)6

6!
+
(ix)7

7!
+ · · ·

= eix,

an exponential , which leads us to Euler’s identity , given by

eiθ = cos θ + i sin θ. (5.3)

This is an extremely useful result. Computing roots, powers, products,
and quotients can now be reduced to familiar exponential operations.
example: The exponential representations for i,−1, and −i are ei π

2 , eiπ,
and ei 3π

2 , respectively.
example: The fifth roots of 32 are the numbers 2e

i2kπ
5 (0 ≤ k ≤ 4), which

are 2, 2e
i2π
5 , 2e

i4π
5 , 2e

i6π
5 , and 2e

i8π
5 .

example: The product of (1 + i) and (
√
3 + i), in rectangular form, is

(1 + i)(
√
3 + i) = (

√
3− 1) + (

√
3 + 1)i.

In polar form, we have(√
2
(
cos

π

4
+ i sin

π

4

))(
2
(
cos

π

6
+ i sin

π

6

))
= 2

√
2
(
cos

(
π

4
+

π

6

)
+ i sin

(
π

4
+

π

6

))

= 2
√
2
(
cos

5π
12
+ i sin

5π
12

)
.

In exponential form, we have
√
2ei π

4 2ei π
6 = 2

√
2ei(π

4
+ π

6
) = 2

√
2ei 5π

12 .
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5.4 Complex Eigenvalues and Complex
Eigenvectors

In Chapter 4, we gave an introduction to eigenvalues and eigenvectors in
which the method for finding eigenvalues of a matrix A involved finding
the roots of the characteristic equation of A. We now have the tools in
hand to consider eigenvalues and eigenvectors of matrices whose
characteristic equations possess nonreal complex roots. For example,

consider A =

[
1 1

−1 1

]
. The characteristic equation is

λ2 − 2λ+ 2 = 0,

and the roots are the complex eigenvalues

λ1 = 1 + i, λ2 = 1− i.

We first look for an eigenvector associated with λ1 = 1 + i, by forming
the matrix

A − λ1I =

[
−i 1
−1 −i

]
.

The second row is +i times the first, so the matrix is singular, as expected.

The first row gives ix1 = x2, so any eigenvector is of the form x = s

[
1
i

]
;

letting s = 1, we have x1 =

[
1
i

]
.

Now we look for an eigenvector associated with λ2 = 1− i. We form
the matrix

A − λ2I =

[
i 1

−1 i

]
.

As before, the matrix is singular; the second row is i times the first.
The second row gives x1 = ix2, so any eigenvector associated with λ2

therefore has the form x = s

[
i
1

]
. Letting s = 1, we have the eigenvector

x2 =

[
i
1

]
.

We leave as an exercise the verification that Ax1 = λ1x1 and show here
that Ax2 = λ2x2.
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Ax2 =

[
1 1

−1 1

] [
i
1

]
=

[
1 + i
1− i

]
= (1− i)

[
i
1

]
.

If x is a vector with (possibly) complex components, we denote by x
the vector whose components are the conjugates of the components of x,
that is, if x = (x1, x2, . . . , xn)T , then x = (x1, x2, . . . , xn)T .

As long as the entries in a matrix A are real, then the quadratic
formula guarantees that complex eigenvalues occur in conjugate pairs. It
might not be immediately obvious that the corresponding eigenvectors also
occur in conjugate pairs. But this is easily verified. Let A be a real matrix,
with a complex eigenvalue λ and corresponding eigenvector x. Then

Ax = Ax (since A is real, then A = A)
= Ax (the conjugate of a product is the product of the conjugates)
= λx (Ax = λx)
= λx

So if A has a conjugate pair of complex eigenvalues, the work involved
in finding the corresponding eigenvectors is cut in half. This can be seen in
the preceding example, and again in the following example.

example: Let A =

[
1 2

−2 1

]
. The characteristic equation of A is

λ2 − 2λ+ 5 = 0,

with roots λ1 = 1 + 2i and λ2 = 1− 2i. Let’s first find an eigenvector x1

for λ1. We have

A − (1 + 2i)I =
[
−2i 2
−2 −2i

]
.

The first row is easily seen to be i times the second, verifying singularity.
Solving (A − (1 + 2i)I)x = 0, we find that x1 + ix2 = 0, so x1 = −ix2. We
take x1 = (−i, 1)T . It follows from the preceding discussion that an
eigenvector for λ2 is x2 = (i, 1)T . Verification is left as an exercise.
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5.5 Exercises for Chapter 5

1. Let z = 2 + 3i, w = 1− 4i, and y = 3− i. Find the following:

(a) z + w, z + y, and w + y

(b) z − w, w − z, z − y, y − z, w − y, and y − w

(c) zw, zy, and wy

2. Let z, w, and y be as in exercise 1. Find |z|, |w|, and |y|.
3. Let z, w, and y be as in exercise 1. Plot z, w, y and the results of
exercise 1 in the complex plane.

4. Let z = 3− 4i. Find z, and verify that |z| = √
zz.

5. Let z = 2 + 2i and w =
√
3− i. Find z/w and w/z.

6. Let z = −3 + i. Find z−1.

7. Let z =
√
2 + i

√
2, w = 2

√
3− 2i, and y = −√

3 + 3i. Find the
modulus and argument of each.

8. Express the following in polar form: z = 1/
√
2 + i/

√
2,

w = −1/√2 + i/
√
2, and y = 1 + i

√
3.

9. Let z, w, and y be as in exercise 7. Use their polar forms to find the
products zw, zy, and wy.

10. Let z and w be as in exercise 7. Use their polar forms to find the
quotients z/w and w/z.

11. Factor completely as products of linear factors:

(a) p(x) = x2 + 9.

(b) q(x) = x2 + 6.

(c) r(x) = x2 − 4x+ 13.
(d) s(x) = x2 + x+ 1.

12. Find the exponential form for each of z, w, and y from exercise 7.
Use their exponential forms to find their products zw, zy, and wy.

13. Use the exponential forms from the preceding problem to find z, w,
and y.
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14. Again using the exponential forms from problem 10, find z/w, w/z,
z/y, y/z, w/y, and y/w.

15. Find all roots of the following equations:

(a) z4 = 1

(b) z3 = 8

16. Verify that the vectors found in the final example in this chapter are
in fact eigenvectors for the given matrix.

17. Let A =

[
1 1

−1 1

]
, and x =

[
i
1

]
. Verify that Ax = (1− i)x.

18. Let A =

[
0 −2
4 4

]
. Find all eigenvalues and associated eigenspaces

of A.

19. As in the preceding problem, but this time using A =

[
1 i

−i 1

]
.
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Appendix A

Solutions to the Exercises

A.1 Solutions to Exercises for Chapter 1

1. Only (c) is linear.

2. We are to solve each system by substitution, if possible.

(a)

{
3x2 = 6

3x1 + 3x2 = 1

Solution: From the first equation, x2 = 2. Substituting into
the second equation, we have 3x1 + 3(2) = 3x1 + 6 = 1, so
3x1 = −5 and x1 = −5/3.

(b)




x1 + 2x2 + x3 = 2
3x1 + 8x2 + x3 = 12
−x1 + 2x2 − 5x3 = 2

Solution: No solution exists. If one goes through the steps
required to discover a solution, in the end one is faced with an
impossibility of the form 0x2 = 4.

(c)




x1 + 2x2 + x3 = 2
3x1 + 8x2 + x3 = 12
−x1 + 2x2 − 3x3 = 2

Solution: Solving the first equation for x1, we find
x1 = 2− 2x2 − x3. Substituting this for x1 in the second
equation, we have x2 − x3 = 3, or x2 = 3 + x3, from which we
have now have x1 = −4− 3x3. We can then eliminate both x1
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and x2 from the third equation, arriving at x3 = −4. It follows
that x2 = 3− 4 = −1 and x1 = −4− 3(−4) = 8.

3. We now use Gaussian elimination to solve systems (a) and (c) from
the preceding problem.

(a)

{
3x2 = 6

3x1 + 3x2 = 1

Solution: There is really no work to be done here, since x1 is
absent from the first equation.

(c)




x1 + 2x2 + x3 = 2
3x1 + 8x2 + x3 = 12
−x1 + 2x2 − 3x3 = 2

Solution: Subtracting three times row one from row two, and
adding row one to row three, we obtain a new system:


x1 + 2x2 + x3 = 2
2x2 − 2x3 = 6
4x2 − 2x3 = 4

Now subtracting twice row two from row three, we have


x1 + 2x2 + x3 = 2
2x2 − 2x3 = 6

2x3 = −8
Backsubstitution gives us x3 = −4, x2 = 1

2(6− 8) = −1, and
x1 = 2 + 2 + 4 = 8.

4. We are to perform Gaussian elimination on the augmented matrix for
each of the following systems, obtaining the general solution.

(a)

{
x1 + 2x2 + x3 = 1

x2 + x3 = 1

(b)




x1 + x2 + x3 + x4 + x5 = 5
x1 + x5 = 3
x1 − x2 = 3

(c)




−x1 + 2x2 − x3 = −4
4x1 − 6x2 − x3 = 7
3x1 + 4x2 + 2x3 = 15
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Solution:

(a) The augmented matrix for system (a) is

A =

[
1 2 1 1
0 1 1 1

]
.

Elimination has no effect, since the matrix is already in
row-echelon form. The free variable is x3, so we let x3 = s and
proceed with back-substitution: x2 = 1− s, and
x1 = 1− s − 2(1 − s) = −1 + s. The general solution is then

(x1, x2, x3) = (−1 + s, 1− s, s).

(b) The augmented matrix for system (b) is

A =


 1 1 1 1 1 5
1 0 0 0 1 3
1 −1 0 0 0 3


 .

Introducing zeros below the pivot in the first column, we have

A =


 1 1 1 1 1 5
0 −1 −1 −1 0 −2
0 −2 −1 −1 −1 −2


 .

Introducing a zero below the pivot in the second column, we
have

A =


 1 1 1 1 1 5
0 −1 −1 −1 0 −2
0 0 1 1 −1 2


 ,

and the elimination is complete. Free variables are x4 and x5, so
we set x4 = s and x5 = t, say. It follows that x3 = 2− s+ t,
x2 = 2− s − (2− s+ t) = −t, and
x1 = 5+ t− (2− s+ t)− s− t = 3− t. So the general solution is

(x1, x2, x3, x4, x5) = (3− t,−t, 2− s+ t, s, t).
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(c) The augmented matrix for system (c) is

A =


 −1 2 −1 −4

4 −6 −1 7
3 4 2 15


 .

Introducing zeros below the pivot in the first column, we have

A =


 −1 2 −1 −4

0 2 −5 −9
0 10 −1 3


 .

Introducing a zero below the pivot in the second column, we
obtain

A =


 −1 2 −1 −4

0 2 −5 −9
0 0 24 48


 .

There are no free variables, so we continue with
backsubstitution, obtaining

(x1, x2, x3) = (3, 1/2, 2).

5. For each of the following systems of two equations in two unknowns,
we are to perform the following steps:

(a) Sketch the system.

(b) Solve the system.

(c) Comment on the stability of the solution of either system to
small changes in the coefficients.

(i)

{
x+ y = 3

1.01x + y = 3.01
(ii)

{
x+ y = 3

1.01x + y = 3.03

Solution:

(a) The lines y = 3− x and y = 3.01 = 1.01x described by the first
system are so nearly identical that any sketch that would fit on
this page would appear to contain only one line. The same
applies to the lines y = 3− x and y = 3.03 − 1.01x described by
the second system. So the sketches are not presented here.
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(b) The solutions are x = 1, y = 2 for the first system and
x = 3, y = 0 for the second.

(c) The second system can be viewed as having been obtained from
the first by making a small change in the right-hand side of the
second equation; this resulted in a dramatic change in the
solution. Thus we may conclude that the solution to either
system is extremely sensitive to small changes in the coefficients.

A.2 Solutions to Exercises for Chapter 2

1. We are given x =

[
1
2

]
, y =

[
−2
1

]
, and z =

[
2

−2

]
, and must

compute the following:

(a) x+ y =

[
−1
3

]
, y + z =

[
0

−1

]
, and x+ z =

[
3
0

]
.

(b) x− y =

[
3
1

]
, and y − x =

[
−3
−1

]
.

(c) 2x− 3y + z =

[
10
−1

]
.

(d) The dot products:

x · y = 1 · (−2) + 2 · 1 = −2 + 2 = 0
x · z = 1 · 2 + 2 · (−2) = 2− 4 = −2

y · z = −2 · 2 + 1 · (−2) = −4− 2 = −6
(e)

x · y = 1 · (−2) + 2 · 1 + (−1) · 0 = −2 + 2 + 0 = 0
x · z = 1 · 2 + 2 · (−2) + (−1) · 3 = 2− 4− 3 = −5
y · z = −2 · 2 + 1 · (−2) + 0 · 3 = −4− 2 + 0 = −6

2. We repeat (1), this time using x =


 1

2
−1


, y =


 −2

1
0


, and

z =


 2

−2
3


, obtaining
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(a) x+ y =


 −1

3
−1


, y + z =


 0

−1
3


, and x+ z =


 30
2


.

(b) x− y =


 3

1
−1


 and y − x =


 −3

−1
1


.

(c) 2x− 3y + z =


 10

−1
1




3. For each pair of vectors from (1), we compute the angle θ between
those vectors:

(a) The angle between x and y is θ = cos−1 0 =
π

2
.

(b) The angle between y and z is θ = cos−1

( −3√
10

)
≈ 2.8198.

(c) The angle between x and z is θ = cos−1

( −1√
10

)
≈ 1.8925.

4. Repeating (3), using the vectors from (2), we find

(a) The angle between x and y is θ = cos−1 0 =
π

2
.

(b) The angle between y and z is θ = cos−1

( −6√
85

)
≈ 2.2794.

(c) The angle between x and z is θ = cos−1

( −5√
102

)
≈ 2.0887.

5. We are given

A =

[
1 2
0 1

]
, B =

[
1 −2
0 1

]
, and C =

[
3 2

−2 1

]
,

and are to perform the following:

(a) Compute the sum, difference, and product of each pair of
matrices.

(b) Compute 2A − 3B + 4C.

(c) Find the transpose of each matrix.

74



(d) For each pair, verify that the transpose of the product is equal
to the product of the transposes, but taken in reverse order.
(e.g., that (AB)T = BT AT )

Solution:

(a) i. The sums: A+B =

[
2 0
0 2

]
, A+ C =

[
4 4

−2 2

]
, and

B + C =

[
4 0

−2 2

]
.

ii. Some differences: A − B =

[
0 4
0 0

]
, B − C =

[
−2 −4
2 0

]

iii. Some products: AB =

[
1 0
0 1

]
, BC =

[
7 0

−2 1

]
,

CB =

[
3 −4

−2 5

]
.

(b) 2A − 3B + 4C =

[
11 18
−8 3

]
.

(c) The transposes:

AT =

[
1 0
2 1

]
, BT =

[
1 0

−2 1

]
, and CT =

[
3 −2
2 1

]
.

(d) Using B and C, we get

BT CT =

[
1 0

−2 1

] [
3 −2
2 1

]
=

[
3 −2

−4 5

]
= (CB)T .

6. We are given A =


 1 2 4
0 1 −1
1 1 1


, and B =


 1 −2 −2
0 1 −1
3 2 1


, and are

to repeat operations (a), (c), and (d) from the preceding exercise,
using A and B.

Solution:

(a) A+B =


 2 0 2
0 2 −2
4 3 2


, A − B =


 0 4 6

0 0 0
−2 −1 0


,

B − A =


 0 −4 −6
0 0 0
2 1 0


,
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AB =


 13 8 0

−3 −1 −2
4 1 −2


, and BA =


 −1 −2 4

−1 0 −2
4 9 11


.

(c) AT =


 1 0 1
2 1 1
4 −1 1


.

(d) BT AT =


 13 −3 4

8 −1 1
0 −2 −2


 = (AB)T .

7. Let A =

[
1 2 4
0 1 −1

]
, and B =


 1 −2
0 1
3 2


. Find each of the

following, or explain why the indicated operation is not defined.

(a) A+B is undefined, since the dimensions of the matrices do not
agree.

(b) A+BT =

[
2 2 7

−2 2 1

]
.

(c) AB =

[
13 8
−3 −1

]
.

(d) AT B is undefined, since the number of columns in AT is not
equal to the number of rows in B.

8. Yes, in both A and B.

9. The columns of A are a linearly dependent set, but the rows of A are
linearly independent. The columns of B are a linearly independent
set, while the rows of B are linearly dependent.

10. Simply verify that AB = BA = I.

11. (a) The matrices from problem (6) both have rank 3. Those from
problem (7) both have rank 2.

(b) The row echelon form of A is



3 2 −4 1 5
0 0 1 1 −9
0 0 0 0 25
0 0 0 0 0


. From this

we see that A has rank 3. The columns of A are linearly
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dependent, as are the rows. We can also see that the set
consisting of columns 1,3, and 5 is linearly independent, as is
the set consisting of rows 1,2, and 3.

A.3 Solutions to Exercises for Chapter 3

1. Given A =

[
2 1
5 3

]
, and B =

[
4 3
7 6

]
, we must find A−1 and B−1

if they exist.

Solution: Both are invertible. Following are the steps for finding
A−1; the same procedure applied to B will produce B−1.

We start with the matrix

[
A I

]
=

[
2 1 1 0
5 3 0 1

]
.

After the initial elimination step, we have the matrix[
2 1 1 0
0 1/2 −5/2 1

]
.

Multiplying row two by 2 and subtracting from row one, we have[
2 0 6 −2
0 1 −5 2

]
.

Finally dividing row one by 2, we have[
1 0 3 −1
0 1 −5 2

]
, revealing A−1 =

[
3 −1

−5 2

]
.

2. Given A =


 1 0 0
1 3 4
2 3 6


, and B =


 2 0 4
1 2 1
2 0 5


, we are again to find

A−1 and B−1 if they exist.

Solution: As in the preceding problem, both matrices are invertible
and, as before, we construct A−1.
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Our starting point is

[
A I

]
=


 1 0 0 1 0 0
1 3 4 0 1 0
2 3 6 0 0 1


 .

Introducing zeros below the pivot in column one, we have
 1 0 0 1 0 0
0 3 4 −1 1 0
0 3 6 −2 0 1


 .

Introducing a zero below the pivot in column two leads to
 1 0 0 1 0 0
0 3 4 −1 1 0
0 0 2 −1 −1 1


 .

Subtracting row three from row two to put a zero above the pivot in
column three, we have

 1 0 0 1 0 0
0 3 0 1 3 −2
0 0 2 −1 −1 1


 .

Finally, dividing row three by 2 and row two by 3, we obtain
 1 0 0 1 0 0
0 1 0 1/3 1 −2/3
0 0 1 −1/2 −1/2 1/2


 ,

from which we know that

A−1 =


 1 0 0

1/3 1 −2/3
−1/2 −1/2 1/2


 .

3. Verify that the LU factorization on pages 39–40, and the solution to
the system in question, are correct.

Solution: It suffices to show that LU = A and that Ax = b:
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LU =


 1 0 0
1 1 0
3 −8 1




 2 3 −1
0 1 4
0 0 42


 =


 2 3 −1
2 4 3
6 1 7


 = A,

and

Ax =


 2 3 −1
2 4 3
6 1 7




 2

−1
−2


 =


 3

−6
−3


 = b.

4. Let A =

[
4 3
7 6

]
, and b = (0,−3)T . Find the LU factorization of A,

and use this factorization to solve Ax = b.

Solution: The multiplier used in reducing A =

[
4 3
7 6

]
to the

upper triangular form U =

[
4 3
0 3/4

]
is m21 = 7/4. It follows that

L =

[
1 0

7/4 1

]
. We now use the decomposition to solve the

indicated system: solving Ly = b, we have y = (0,−3)T . Solving
Ux = y, we find x = (3,−4)T .

5. Let A =


 1 1 0
3 1 4
2 3 5


, and b = (1, 3, 9)T . Find the LU factorization

of A, and use this factorization to solve Ax = b.

Solution: The multipliers used in reducing A =


 1 1 0
3 1 4
2 3 5


 to the

upper-triangular form U =


 1 1 0
0 −2 4
0 0 7


 are m21 = 3, m31 = 2, and

m32 = −1/2, so L =


 1 0 0
3 1 0
2 −1/2 1


. Solving Ly = b, we have

y = (1, 0, 7)T . Solving Ux = y, we obtain x = (−1, 2, 1)T .
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6. Given A =


 2 0 0
1 2 4
3 3 6


 , B =


 1 1 0
3 1 4
2 3 5


, and

C =


 1 2 3

4 5 −6
−7 8 9


, we must find det(A), det(B), and det(C),

using cofactor expansions.

Solution: Expanding along row one to exploit the 0’s, we find

det(A) = 2det

[
2 4
3 6

]
= 2(12− 12) = 0.

Either row one or column three would be best for B; using row one,
we have

det(B) = det

[
1 4
3 5

]
− det

[
3 4
2 5

]
= −7− 7 = −14.

There being no 0’s in C, there are no shortcuts. Using row one, we
find

det(C) = det

[
5 −6
8 9

]
− 2 det

[
4 −6

−7 9

]
+3det

[
4 5

−7 8

]
= 306.

7. Let A =

[
2 4

−1 2

]
, and let b = (2,−5)T . Solve Ax = b using

Cramer’s rule.

Solution: Using the notation from the text, we have

A(1) =

[
2 4

−5 2

]
, and A(2) =

[
2 2

−1 −5

]
.

With det(A) = 8, det(A(1)) = 24, and det(A(2)) = −8, we have
x1 = 3 and x2 = −1, i.e., x = (3,−1)T .

8. Let A =


 1 1 0
3 1 4
2 3 5


 , and let b = (−1, 13, 11)T . Solve Ax = b using

Cramer’s rule.
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Solution: Again using the notation from the text, we have

A(1) =


 −1 1 0
13 1 4
11 3 5


 , A(2) =


 1 −1 0
3 13 4
2 11 5


 , and A(3) =


 1 1 −1
3 1 13
2 3 11


 .

Their determinants are −14, 28, and −42, respectively, and the
determinant of A is −14. It follows that x1 = 1, x2 = −2, and
x3 = 3, so x = (1,−2, 3)T .

9. We verify that (x × y) · x = 0:

(x× y) · x = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1)T · (x1, x2, x3)T

= x1x2y3 − x1x3y2 + x2x3y1 − x1x2y3 + x1y2x3 − x2y1x3

= x1x2y3 − x1x2y3 + x1x3y2 − x1x3y2 + x2x3y1 − x2x3y1

= 0.

10. With u = (2,−1, 1)T and v = (−1, 2, 1)T , we have

(a) u× v = (−3,−3, 3)T .
(b) v × u = (3, 3,−3)T .
(c) We can do this in a couple of ways. First, since we already know

from (a) that u× v = (−3,−3, 3)T , we can easily compute
||u× v|| = √

27 = 3
√
3. Alternatively, if θ is the angle between

u and v, then cos θ =
u · v

||u||||v|| = −1
2
, so θ =

2π
3
. It follows that

sin θ =
√
3
2
, and finally the area of the parallelogram determined

by u and v is ||u × v|| = 3√3.

11. With e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , and e3 = (0, 0, 1)T , we have
e1 × e2 = (0− 0, 0− 0, 1− 0)T = e1. The other verifications are
equally straightforward.

A.4 Solutions to Exercises for Chapter 4

1. In each of the following, we are to verify that the given vectors are
eigenvectors for the given matrix and to identify the associated
eigenvalues.
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(a) A =

[
−1 8
1 1

]
, x1 =

[
2
1

]
, x2 =

[
−4
1

]
.

(b) A =


 1 30 0
1 0 0
0 1 0


 , x1 =


 0

0
−3


 , x2 =


 25

−5
1


x3 =


 366

1


.

Solution:

(a) Ax1 = (6, 3)T = 3x1, and Ax2 = (12,−3)T = −3x2; eigenvalues
are 3 and −3.

(b) Ax1 = (0, 0, 0)T = 0x1, Ax2 = (−125, 25,−5)T = −5x2,
Ax3 = (216, 36, 6)T = 6x3; eigenvalues are 0, −5, and 6.

2. For each of the following 2× 2 matrices, we are to
(a) Find the characteristic polynomial, in factored form.

(b) Find all eigenvalues.

(c) For each eigenvalue λ, find an associated eigenvector x, and
verify that Ax = λx.

(a) A =

[
−3 4
1 0

]

(b) B =

[
−3 12
1 1

]

(c) C =

[
2 −16

−1 −4

]

Solution:

(a) The characteristic polynomial for A is
det(A − λI) = λ2 + 3λ − 4 = (λ+ 4)(λ − 1). The eigenvalues are
1 and −4. Solving (A − I)x = 0, we find that any eigenvector is
of the form (s, s)T , so (1, 1)T will do nicely as an eigenvector for
λ = 1. Solving (A+ 4I)x = 0, we find that the associated
eigenvectors are of the form (4s,−s)T , so (4,−1) is an
eigenvector for λ = −4.
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(b) The characteristic polynomial for B is
λ2 + 2λ − 15 = (λ+ 5)(λ − 3). The eigenvalues are λ1 = −5 and
λ2 = 3. An eigenvector for λ1 is (6,−1)T , and an eigenvector for
λ2 is (2, 1)T .

(c) The characteristic polynomial for C is
λ2 + 2λ − 24 = (λ+ 6)(λ − 4). Eigenvalues are λ1 = −6 and
λ2 = 4. An eigenvector for λ1 is (2, 1)T , and an eigenvector for
λ2 is (8,−1)T .

3. Repeat exercise (2), but with the following matrices:

(a) A =


 3 0 0
0 2 −6
0 −1 1




(b) B =


 4 5 −6
1 2 0
0 1 2




(c) C =


 3 1 0

19 1 1
−20 0 1




Solution:

(a) The characteristic polynomial for A is
(3− λ)(λ2 − 3λ − 4) = (λ+ 1)(λ − 3)(λ − 4); the eigenvalues are
λ1 = −1, λ2 = 3, and λ3 = 4. An eigenvector for λ1 = −1 is
(0, 2, 1)T ; an eigenvector for λ2 = 3 is (1, 0, 0)T ; an eigenvector
for λ3 = 4 is (0, 3,−1)T .

(b) The characteristic polynomial for B is
−λ3 + 8λ2 − 15λ = (−λ)(λ − 3)(λ − 5), with zeros λ1 = 0,
λ2 = 3, and λ3 = 5. An eigenvector for λ1 = 0 is (4,−2, 1)T ; an
eigenvector for λ2 = 3 is (1, 1, 1T ); an eigenvector for λ3 = 5 is
(9, 3, 1)T .

(c) The characteristic polynomial for C is
−λ3+5λ2 +12λ− 36 = (λ− 2)(λ+3)(λ− 6), with zeros λ1 = 2,
λ2 = −3, and λ3 = 6. An eigenvector for λ1 = 2 is
(1,−1,−20)T ; an eigenvector for λ2 = −3 is (1,−6, 5)T ; an
eigenvector for λ3 = 6 is (1, 3,−4)T
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A.5 Solutions to Exercises for Chapter 5

1. Given z = 2 + 3i, w = 1− 4i, and y = 3− i, we are to find the
following:

(a) z + w, z + y, and w + y

(b) z − w, w − z, z − y, y − z, w − y, and y − w

(c) zw, zy, and wy

Solution:

(a) z + w = 3− i, z + y = 5 + 2i, and w + y = 4− 5i.
(b) z − w = 1 + 7i, w − z = −1− 7i, z − y = −1 + 4i, y − z =

1− 4i, w − y = −2− 3i, and y − w = 2 + 3i.

(c) zw = 14− 5i, zy = 9 + 7i, and wy = −1− 13i.
2. Given z, w, and y be as in exercise 1, we have

|z| = √
4 + 9 =

√
13, |w|√1 + 16 = √

17, and |y| = √
9 + 1 =

√
10.

4. Let z = 3− 4i. Find z, and verify that |z| = √
zz.

Solution: z = 3 + 4i, and |z| = 5 = √(3− 4i)(3 + 4i).
5. Let z = 2 + 2i and w =

√
3− i. Find z/w and w/z.

Solution:

z/w =
2 + 2i√
3− i

=
(2 + 2i)(

√
3 + i)

(
√
3− i)(

√
3 + i)

=
(
√
3− 1) + (√3 + 1)i

2
,

and w/z =
√
3− i

2 + 2i
=
(
√
3− i)(2 − 2i)

(2 + 2i)(2 − 2i) =
(
√
3− 1)− (√3 + 1)i

4
.

6. Let z = −3 + i. Find z−1.

Solution: z−1 =
1
z
=

z

zz
=

−3− i

10
.

7. Let z =
√
2 + i

√
2, w = 2

√
3− 2i, and y = −√

3 + 3i. Find the
modulus and argument of each.

Solution: |z| = √
2 + 2 = 2, arg(z) =

π

4
,

|w| = √
16 = 4, arg(w) =

−π

6
,

|y| = √
12 = 2

√
3, and arg(y) =

2π
3
.
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8. Express the following in polar form: z = 1/
√
2 + i/

√
2,

w = −1/√2 + i/
√
2, and y = 1 + i

√
3.

Solution: z = cos
π

4
+ i sin

π

4
, w = cos

3π
4
+ i sin

3π
4
,

y = 2(cos
π

3
+ i sin

π

3
).

9. Let z, w, and y be as in exercise 7. Use their polar forms to find the
products zw, zy, and wy.

Solution: Applying the results of exercise 7, we have

z = 2
(
cos

π

4
+ i sin

π

4

)
,

w = 4
(
cos

−π

6
+ i sin

−π

6

)
, and y = 2

√
3
(
cos

2π
3
+ i sin

2π
3

)
. It

follows that
zw = 8

(
cos

π

12
+ i sin

π

12

)
, zy = 4

√
3
(
cos

11π
12

+ i sin
11π
12

)
,

and wy = 8
√
3
(
cos

π

2
+ i sin

π

2

)
.

10. Let z and w be as in exercise 7. Use their polar forms to find the
quotients z/w and w/z.

Solution: From the preceding problem, we have

z = 2(cos
π

4
+ i sin

π

4
) and w = 4

(
cos

−π

6
+ i sin

−π

6

)
. So

z/w =
1
2

(
cos

5π
12
+ i sin

5π
12

)
and w/z = 2

(
cos

−5π
12

+ i sin
−5π
12

)
.

11. Factor completely as products of linear factors:

(a) p(x) = x2 + 9 = (x+ 3i)(x − 3i).
(b) q(x) = x2 + 6 = (x+ i

√
6)(x − i

√
6).

(c) r(x) = x2 − 4x+ 13 = (x − (2 + 3i))(x − (2− 3i)).

(d) s(x) = x2 + x+ 1 =

(
x+

(
1− i

√
3

2

))(
x+

(
1 + i

√
3

2

))
.

12. Find the exponential form for each of z, w, and y from exercise 7.
Use their exponential forms to find their products zw, zy, and wy.

Solution: z = 2e
iπ
4 , w = 4e

−iπ
6 , and y = 2

√
3e

2iπ
3 . So zw = 8e

iπ
12 ,

zy = 4
√
3e

11iπ
12 , and wy = 8

√
3e

iπ
2 .
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13. Use the exponential forms from the preceding problem to find z, w,
and y.

Solution: z = 2e
−iπ
4 , w = 4e

iπ
6 , and y = 2

√
3e

−2iπ
3 .

14. Again using the exponential forms from problem 12, find z/w, w/z,
z/y, y/z, w/y, and y/w.

Solution: z/w = 1
2ei(π

4
+ π

6 ) = 1
2e

i5π
12 , w/z = 2e

−i5π
12 , z/y = 1√

3
e−i 5π

12 ,

y/z =
√
3ei 5π

12 , w/y = 2√
3
e−i 5π

6 , and y/w =
√

3
2 ei 5π

6 .

15. Find all roots of the following equations:

(a) z4 = 1

(b) z3 = 8

Solution:

(a) The roots are z = ±1 and z = ±i.

(b) The roots are z = 2, z = 2ei 2π
3 , and z = 2ei 4π

3 .

16. Verify that the vectors found in the final example in this chapter are
in fact eigenvectors for the given matrix.

Solution: The matrix was A =

[
1 2

−2 1

]
, and the claimed

eigenvectors are x1 = (−i, 1)T and x2 = (i, 1)T . We check:

Ax1 =

[
1 2

−2 1

] [
−i
1

]
=

[
2− i
1 + 2i

]
= (1 + 2i)x1,

and

Ax2 =

[
1 2

−2 1

] [
i
1

]
=

[
2 + i
1− 2i

]
= (1− 2i)x2.

17. Let A =

[
1 1

−1 1

]
, and x =

[
i
1

]
. Verify that Ax = (1− i)x.

Solution:

Ax =

[
1 1

−1 1

] [
i
1

]
=

[
1 + i
1− i

]
=

[
(1− i)i
(1− i)1

]
= (1 − i)

[
i
1

]
.
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18. Let A =

[
0 −2
4 4

]
. Find all eigenvalues and associated eigenspaces

of A.

Solution: The characteristic equation is λ2 − 4λ+ 8 = 0, with roots
λ = 2± 2i. Solving (A − λI)x = 0 for λ = 2 + 2i, we find that x can

be any multiple of

[
2i − 2
4

]
. Repeating this for λ = 2− 2i, an

associated eigenvector can be any multiple of

[
2i+ 2
−4

]
.

19. As in the preceding problem, but this time using A =

[
1 i

−i 1

]
.

Solution: The eigenvalues are λ = 0 and λ = 2. A representative
eigenvector for λ = 0 is x = (i,−1)T , while a representative
eigenvector for λ = 2 is x = (i, 1)T .
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Linear transformation, 27
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Matrix, 8
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Matrix operations
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transpose, 17

Minor, 43

Norm, of vector, 21
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Orthogonal vectors, 21

PA=LU, 41
Pivot, 9
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Rank, of matrix, 26
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Roots of unity, 62
Row-echelon form, 9
Row-equivalence, 9

Scalar, 19
Scalar product, 20
Singular matrix, 23
Substitution, method of, 2
System of linear equations, 2

Diagonal, 4
General solution to, 2, 28
Matrix representation of, 8
Triangular, 4

Transpose, of matrix, 17
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Vector space, 27
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